Power electronics-based three-stage smart transformers (ST) can be seriously damaged by inrush currents and overvoltages during the start-up phase if the control of the stages is not correctly coordinated. Hence, it is crucial to design properly the start-up procedure, especially in case of modular architectures with distributed DC-links. The design of the start-up procedure depends on the ST power stages topologies, their control systems and the operation modes. This work proposes a soft-shift start modulation technique that allows to limit the inrush current in the DC/DC isolation stage during the DC-link capacitors pre-charging. A fast voltage balancing control, performed by the DC/DC isolation stage, is introduced to avoid overvoltages and unbalanced voltage conditions among the different power cells. Under the proposed method, fast control dynamics is guaranteed thanks to the high frequency bandwidth of the DC/DC isolation stage converters. Theoretical analysis, based on a detailed small signal model of the ST, and simulations are used to demonstrate the principle of the operation. Experimental results, carried out in a ST prototype, confirm the performances of proposed solution in realizing a smooth start-up without voltage/current overshoots.

Soft-Start Procedure for a Three-Stage Smart Transformer based on Dual Active Bridge and Cascaded H-Bridge Converters / Sante Pugliese, Giampaolo Buticchi, Rosa Anna Mastromauro, Markus Andresen, Marco Liserre, Silvio Stasi. - In: IEEE TRANSACTIONS ON POWER ELECTRONICS. - ISSN 0885-8993. - ELETTRONICO. - early access:(2020), pp. 1-14. [10.1109/TPEL.2020.2977226]

Soft-Start Procedure for a Three-Stage Smart Transformer based on Dual Active Bridge and Cascaded H-Bridge Converters

Rosa Anna Mastromauro;
2020

Abstract

Power electronics-based three-stage smart transformers (ST) can be seriously damaged by inrush currents and overvoltages during the start-up phase if the control of the stages is not correctly coordinated. Hence, it is crucial to design properly the start-up procedure, especially in case of modular architectures with distributed DC-links. The design of the start-up procedure depends on the ST power stages topologies, their control systems and the operation modes. This work proposes a soft-shift start modulation technique that allows to limit the inrush current in the DC/DC isolation stage during the DC-link capacitors pre-charging. A fast voltage balancing control, performed by the DC/DC isolation stage, is introduced to avoid overvoltages and unbalanced voltage conditions among the different power cells. Under the proposed method, fast control dynamics is guaranteed thanks to the high frequency bandwidth of the DC/DC isolation stage converters. Theoretical analysis, based on a detailed small signal model of the ST, and simulations are used to demonstrate the principle of the operation. Experimental results, carried out in a ST prototype, confirm the performances of proposed solution in realizing a smooth start-up without voltage/current overshoots.
2020
early access
1
14
Goal 7: Affordable and clean energy
Sante Pugliese, Giampaolo Buticchi, Rosa Anna Mastromauro, Markus Andresen, Marco Liserre, Silvio Stasi
File in questo prodotto:
File Dimensione Formato  
softstart_TPE_2020.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 6.95 MB
Formato Adobe PDF
6.95 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1194961
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 39
social impact