We have measured the radiation tolerance of poly-crystalline and single-crystalline diamonds grown by the chemical vapor deposition (CVD) process by measuring the charge collected before and after irradiation in a 50 μm pitch strip detector fabricated on each diamond sample. We irradiated one group of sensors with 800 MeV protons, and a second group of sensors with 24 GeV protons, in steps, to (1.34 ± 0.08 × 1016) protons cm-2 and (1.80 ± 0.18 × 1016) protons cm-2 respectively. We observe the sum of mean drift paths for electrons and holes for both poly-crystalline CVD diamond and single-crystalline CVD diamond decreases with irradiation fluence from its initial value according to a simple damage curve characterized by a damage constant for each irradiation energy and the irradiation fluence. We find for each irradiation energy the damage constant, for poly-crystalline CVD diamond to be the same within statistical errors as the damage constant for single-crystalline CVD diamond. We find the damage constant for diamond irradiated with 24 GeV protons to be 0.62+0.01-0.01 (stat)+0.06-0.06 (syst) × 10-18 cm2(p μm)-1 and the damage constant for diamond irradiated with 800 MeV protons to be 1.04+0.02-0.02 (stat)+0.04-0.05 (syst) × 10-18 cm2 (p μm)-1. Moreover, we observe the FWHM/MP pulse height decreases with fluence for poly-crystalline CVD material and within statistical errors does not change with fluence for single-crystalline CVD material for both 24 GeV proton irradiation and 800 MeV proton irradiation. Finally, we have measured the uniformity of each sample as a function of fluence and observed that for poly-crystalline CVD diamond the samples become more uniform with fluence while for single-crystalline CVD diamond the uniformity does not change with fluence.

A study of the radiation tolerance of poly-crystalline and single-crystalline CVD diamond to 800 MeV and 24 GeV protons / Bani L.; Alexopoulos A.; Artuso M.; Bachmair F.; Bartosik M.; Beck H.; Bellini V.; Belyaev V.; Bentele B.; Bes A.; Brom J.-M.; Bruzzi M.; Chiodini G.; Chren D.; Cindro V.; Claus G.; Collot J.; Cumalat J.; Dabrowski A.; D'Alessandro R.; Dauvergne D.; De Boer W.; Dick S.; Dorfer C.; Dunser M.; Eremin V.; Forcolin G.; Forneris J.; Gallin-Martel L.; Gallin-Martel M.-L.; Gan K.K.; Gastal M.; Giroletti C.; Goffe M.; Goldstein J.; Golubev A.; Gorisek A.; Grigoriev E.; Grosse-Knetter J.; Grummer A.; Gui B.; Guthoff M.; Hiti B.; Hits D.; Hoeferkamp M.; Hofmann T.; Hosselet J.; Hostachy J.-Y.; Hugging F.; Hutton C.; Janssen J.; Kagan H.; Kanxheri K.; Kasieczka G.; Kass R.; Kis M.; Kramberger G.; Kuleshov S.; Lacoste A.; Lagomarsino S.; Lo Giudice A.; Paz I.L.; Lukosi E.; Maazouzi C.; Mandic I.; Mathieu C.; Menichelli M.; Mikuz M.; Morozzi A.; Moss J.; Mountain R.; Oh A.; Olivero P.; Passeri D.; Pernegger H.; Perrino R.; Piccini M.; Picollo F.; Pomorski M.; Potenza R.; Quadt A.; Rarbi F.; Re A.; Reichmann M.; Roe S.; Becerra D.A.S.; Scaringella M.; Schaffner D.; Schmidt C.J.; Schnetzer S.; Schioppa E.; Sciortino S.; Scorzoni A.; Seidel S.; Servoli L.; Smith D.S.; Sopko B.; Sopko V.; Spagnolo S.; Spanier S.; Stenson K.; Stone R.; Sutera C.; Traeger M.; Trischuk W.; Truccato M.; Tuve C.; Velthuis J.; Venturi N.; Wagner S.; Wallny R.; Wang J.C.; Weingarten J.; Weiss C.; Wengler T.; Wermes N.; Yamouni M.; Zavrtanik M.. - In: JOURNAL OF PHYSICS D. APPLIED PHYSICS. - ISSN 0022-3727. - ELETTRONICO. - 52:(2019), pp. 0-0. [10.1088/1361-6463/ab37c6]

A study of the radiation tolerance of poly-crystalline and single-crystalline CVD diamond to 800 MeV and 24 GeV protons

Bruzzi M.;D'Alessandro R.;Lagomarsino S.;Scaringella M.;Sciortino S.;
2019

Abstract

We have measured the radiation tolerance of poly-crystalline and single-crystalline diamonds grown by the chemical vapor deposition (CVD) process by measuring the charge collected before and after irradiation in a 50 μm pitch strip detector fabricated on each diamond sample. We irradiated one group of sensors with 800 MeV protons, and a second group of sensors with 24 GeV protons, in steps, to (1.34 ± 0.08 × 1016) protons cm-2 and (1.80 ± 0.18 × 1016) protons cm-2 respectively. We observe the sum of mean drift paths for electrons and holes for both poly-crystalline CVD diamond and single-crystalline CVD diamond decreases with irradiation fluence from its initial value according to a simple damage curve characterized by a damage constant for each irradiation energy and the irradiation fluence. We find for each irradiation energy the damage constant, for poly-crystalline CVD diamond to be the same within statistical errors as the damage constant for single-crystalline CVD diamond. We find the damage constant for diamond irradiated with 24 GeV protons to be 0.62+0.01-0.01 (stat)+0.06-0.06 (syst) × 10-18 cm2(p μm)-1 and the damage constant for diamond irradiated with 800 MeV protons to be 1.04+0.02-0.02 (stat)+0.04-0.05 (syst) × 10-18 cm2 (p μm)-1. Moreover, we observe the FWHM/MP pulse height decreases with fluence for poly-crystalline CVD material and within statistical errors does not change with fluence for single-crystalline CVD material for both 24 GeV proton irradiation and 800 MeV proton irradiation. Finally, we have measured the uniformity of each sample as a function of fluence and observed that for poly-crystalline CVD diamond the samples become more uniform with fluence while for single-crystalline CVD diamond the uniformity does not change with fluence.
2019
52
0
0
Bani L.; Alexopoulos A.; Artuso M.; Bachmair F.; Bartosik M.; Beck H.; Bellini V.; Belyaev V.; Bentele B.; Bes A.; Brom J.-M.; Bruzzi M.; Chiodini G.; Chren D.; Cindro V.; Claus G.; Collot J.; Cumalat J.; Dabrowski A.; D'Alessandro R.; Dauvergne D.; De Boer W.; Dick S.; Dorfer C.; Dunser M.; Eremin V.; Forcolin G.; Forneris J.; Gallin-Martel L.; Gallin-Martel M.-L.; Gan K.K.; Gastal M.; Giroletti C.; Goffe M.; Goldstein J.; Golubev A.; Gorisek A.; Grigoriev E.; Grosse-Knetter J.; Grummer A.; Gui B.; Guthoff M.; Hiti B.; Hits D.; Hoeferkamp M.; Hofmann T.; Hosselet J.; Hostachy J.-Y.; Hugging F.; Hutton C.; Janssen J.; Kagan H.; Kanxheri K.; Kasieczka G.; Kass R.; Kis M.; Kramberger G.; Kuleshov S.; Lacoste A.; Lagomarsino S.; Lo Giudice A.; Paz I.L.; Lukosi E.; Maazouzi C.; Mandic I.; Mathieu C.; Menichelli M.; Mikuz M.; Morozzi A.; Moss J.; Mountain R.; Oh A.; Olivero P.; Passeri D.; Pernegger H.; Perrino R.; Piccini M.; Picollo F.; Pomorski M.; Potenza R.; Quadt A.; Rarbi F.; Re A.; Reichmann M.; Roe S.; Becerra D.A.S.; Scaringella M.; Schaffner D.; Schmidt C.J.; Schnetzer S.; Schioppa E.; Sciortino S.; Scorzoni A.; Seidel S.; Servoli L.; Smith D.S.; Sopko B.; Sopko V.; Spagnolo S.; Spanier S.; Stenson K.; Stone R.; Sutera C.; Traeger M.; Trischuk W.; Truccato M.; Tuve C.; Velthuis J.; Venturi N.; Wagner S.; Wallny R.; Wang J.C.; Weingarten J.; Weiss C.; Wengler T.; Wermes N.; Yamouni M.; Zavrtanik M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1195032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 9
social impact