In the numerical methods for the Laplace transform inversion, the quantification of the errors in computational processes is a crucial issue. In this paper, we propose two inversion methods based on smoothing splines combined with a procedure for the derivation of error bounds. In particular, we numerically study the impact of the fitting error amplification through the analysis of several sources of error and their propagation.

Computational error bounds for Laplace transform inversion based on smoothing splines / Rosanna Campagna, Costanza Conti, Salvatore Cuomo. - In: APPLIED MATHEMATICS AND COMPUTATION. - ISSN 1873-5649. - STAMPA. - 383:(2020), pp. 1-11. [10.1016/j.amc.2020.125376]

Computational error bounds for Laplace transform inversion based on smoothing splines

Costanza Conti;
2020

Abstract

In the numerical methods for the Laplace transform inversion, the quantification of the errors in computational processes is a crucial issue. In this paper, we propose two inversion methods based on smoothing splines combined with a procedure for the derivation of error bounds. In particular, we numerically study the impact of the fitting error amplification through the analysis of several sources of error and their propagation.
2020
383
1
11
Goal 9: Industry, Innovation, and Infrastructure
Rosanna Campagna, Costanza Conti, Salvatore Cuomo
File in questo prodotto:
File Dimensione Formato  
CampagnaContiCuomo_AMC2020.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1195272
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact