We establish the interior Hölder continuity for locally bounded solutions, and the Harnack inequality for non-negative continuous solutions to a class of anisotropic elliptic equations with bounded and measurable coefficients, whose prototype equation is $u_{xx} + Delta _{q,y}u= 0$ locally in $R imes R^{N−1}$, for $q < 2$, via ideas and tools originating from the regularity theory for degenerate and singular parabolic equations.

Local regularity for an anisotropic elliptic equation / Naian Liao, Igor I. Skrypnik, · Vincenzo Vespri. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 1432-0835. - STAMPA. - 59:(2020), pp. 1-31. [10.1007/s00526-020-01781-x]

Local regularity for an anisotropic elliptic equation

Naian Liao;· Vincenzo Vespri
2020

Abstract

We establish the interior Hölder continuity for locally bounded solutions, and the Harnack inequality for non-negative continuous solutions to a class of anisotropic elliptic equations with bounded and measurable coefficients, whose prototype equation is $u_{xx} + Delta _{q,y}u= 0$ locally in $R imes R^{N−1}$, for $q < 2$, via ideas and tools originating from the regularity theory for degenerate and singular parabolic equations.
2020
59
1
31
Goal 4: Quality education
Naian Liao, Igor I. Skrypnik, · Vincenzo Vespri
File in questo prodotto:
File Dimensione Formato  
calcvar.pdf

accesso aperto

Descrizione: postprint
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 433.97 kB
Formato Adobe PDF
433.97 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1199155
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact