This paper reports a detailed experimental characterization of non Line-of-Sight (LoS) optical performances of a Visible Light Communication (VLC) system using a real traffic light for ultra-low latency, infrastructure-to-vehicle (I2V) communications for intelligent transportation systems (ITS) protocols. Despite the implementation of long-sought ITS protocols poses the crucial need to detail how the features of optical stages influence the overall performances of a VLC system in realistic configurations, such characterization has rarely been addressed at present. We carried out an experimental investigation in a realistic configuration where a regular traffic light (TX), enabled for VLC transmission, sends digital information towards a receiving stage (RX), composed by an optical condenser and a dedicated amplified photodiode stage. We performed a detailed measurements campaign of VLC performances encompassing a broad set of optical condensers, and for TX-RX distances in the range 3–50 m, in terms of both effective Field of View (EFOV) and Packet Error Rate (PER). The results show several angle-dependent nontrivial behaviors for different lens sets as a function of position on the measurement grid, highlighting critical aspects for ITS applications as well as identifying most suitable optical configurations depending on the specific application and on the required EFOV. We also provide a theoretical model for both the signal intensity and the EFOV as a function of several parameters, such as distance, RX orientation and focal length of the specific condenser. To our best knowledge, there are no optical and EFOV experimental analyses for VLC systems in ITS applications in literature. Our results could be very relevant in the near future to assess a most suited solution in terms of acceptance angle when designing a VLC system for real applications, where angle-dependent misalignment effects play a non-negligible role, and we argue that they could have more general implications with respect to the pristine I2V case mentioned here.

Characterization of Field of View in Visible Light Communication Systems for Intelligent Transportation Systems / Seminara, Marco; Nawaz, Tassadaq; Caputo, Stefano; Mucchi, Lorenzo; Catani, Jacopo. - In: IEEE PHOTONICS JOURNAL. - ISSN 1943-0655. - STAMPA. - 12:(2020), pp. 1-16. [10.1109/JPHOT.2020.3005620]

Characterization of Field of View in Visible Light Communication Systems for Intelligent Transportation Systems

Seminara, Marco;Nawaz, Tassadaq;Caputo, Stefano;Mucchi, Lorenzo
;
Catani, Jacopo
2020

Abstract

This paper reports a detailed experimental characterization of non Line-of-Sight (LoS) optical performances of a Visible Light Communication (VLC) system using a real traffic light for ultra-low latency, infrastructure-to-vehicle (I2V) communications for intelligent transportation systems (ITS) protocols. Despite the implementation of long-sought ITS protocols poses the crucial need to detail how the features of optical stages influence the overall performances of a VLC system in realistic configurations, such characterization has rarely been addressed at present. We carried out an experimental investigation in a realistic configuration where a regular traffic light (TX), enabled for VLC transmission, sends digital information towards a receiving stage (RX), composed by an optical condenser and a dedicated amplified photodiode stage. We performed a detailed measurements campaign of VLC performances encompassing a broad set of optical condensers, and for TX-RX distances in the range 3–50 m, in terms of both effective Field of View (EFOV) and Packet Error Rate (PER). The results show several angle-dependent nontrivial behaviors for different lens sets as a function of position on the measurement grid, highlighting critical aspects for ITS applications as well as identifying most suitable optical configurations depending on the specific application and on the required EFOV. We also provide a theoretical model for both the signal intensity and the EFOV as a function of several parameters, such as distance, RX orientation and focal length of the specific condenser. To our best knowledge, there are no optical and EFOV experimental analyses for VLC systems in ITS applications in literature. Our results could be very relevant in the near future to assess a most suited solution in terms of acceptance angle when designing a VLC system for real applications, where angle-dependent misalignment effects play a non-negligible role, and we argue that they could have more general implications with respect to the pristine I2V case mentioned here.
2020
12
1
16
Goal 3: Good health and well-being for people
Goal 9: Industry, Innovation, and Infrastructure
Goal 11: Sustainable cities and communities
Seminara, Marco; Nawaz, Tassadaq; Caputo, Stefano; Mucchi, Lorenzo; Catani, Jacopo
File in questo prodotto:
File Dimensione Formato  
FINAL VERSION.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 8.62 MB
Formato Adobe PDF
8.62 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1202083
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 26
social impact