Background: Displaced abomasum (DA) is a condition of dairy cows that severely impacts animal welfare and causes huge economic losses. Objective: To assess the metabolic status of the disease using metabolomics in serum, urine and liver samples aimed at both water soluble and lipid soluble fractions. Methods: Fifty Holstein multiparous cows with DA (42 left, 8 right) and 20 clinically healthy Holstein multiparous cows were used. Left DA was associated with concomitant ketosis in 19 animals and right in two. NMR-based metabolomics approach and hematological and biochemical analyses were performed. Statistical analysis was carried out on 1H-NMR data after they have been normalized using PQN method. Results: Contrary to generated PCA score plots the OPLS-supervised method revealed differences between healthy animals and diseased ones based on serum water-soluble samples. While water and lipid soluble metabolites decreased in serum samples, fatty acid fractions and cholesterol were increased in liver samples in DA affected cows. The metabolomic and chemical profiles clearly revealed that cows with DA (especially with LDA) were at risk of ketosis and fatty liver. Serum hippuric acid concentration was significantly higher in healthy cows in comparison with LDA, whereas serum glycine concentration was reported higher for healthy when compared to RDA affected animals. Conclusion: A biochemical network and pathway mapping revealed ‘valine, leucine and isoleucine biosynthesis’ and ‘phenylalanine, tyrosine and tryptophan biosynthesis’ as the most probable altered metabolic pathway in DA condition. Serum was advocated as the optimal biological matrix for the 1H-NMR analysis.

Nuclear magnetic resonance (NMR)-based metabolome profile evaluation in dairy cows with and without displaced abomasum / Basoglu A.; Baspinar N.; Tenori L.; Licari C.; Gulersoy E.. - In: THE VETERINARY QUARTERLY. - ISSN 0165-2176. - ELETTRONICO. - 40:(2020), pp. 1-15. [10.1080/01652176.2019.1707907]

Nuclear magnetic resonance (NMR)-based metabolome profile evaluation in dairy cows with and without displaced abomasum

Tenori L.;Licari C.;
2020

Abstract

Background: Displaced abomasum (DA) is a condition of dairy cows that severely impacts animal welfare and causes huge economic losses. Objective: To assess the metabolic status of the disease using metabolomics in serum, urine and liver samples aimed at both water soluble and lipid soluble fractions. Methods: Fifty Holstein multiparous cows with DA (42 left, 8 right) and 20 clinically healthy Holstein multiparous cows were used. Left DA was associated with concomitant ketosis in 19 animals and right in two. NMR-based metabolomics approach and hematological and biochemical analyses were performed. Statistical analysis was carried out on 1H-NMR data after they have been normalized using PQN method. Results: Contrary to generated PCA score plots the OPLS-supervised method revealed differences between healthy animals and diseased ones based on serum water-soluble samples. While water and lipid soluble metabolites decreased in serum samples, fatty acid fractions and cholesterol were increased in liver samples in DA affected cows. The metabolomic and chemical profiles clearly revealed that cows with DA (especially with LDA) were at risk of ketosis and fatty liver. Serum hippuric acid concentration was significantly higher in healthy cows in comparison with LDA, whereas serum glycine concentration was reported higher for healthy when compared to RDA affected animals. Conclusion: A biochemical network and pathway mapping revealed ‘valine, leucine and isoleucine biosynthesis’ and ‘phenylalanine, tyrosine and tryptophan biosynthesis’ as the most probable altered metabolic pathway in DA condition. Serum was advocated as the optimal biological matrix for the 1H-NMR analysis.
2020
40
1
15
Goal 3: Good health and well-being for people
Basoglu A.; Baspinar N.; Tenori L.; Licari C.; Gulersoy E.
File in questo prodotto:
File Dimensione Formato  
TVEQ_40_1707907.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1202244
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact