In recent years the aero-engine community is looking towards the reduction of specific fuel consumption by increasing the efficiency of gearing systems. Considering their weight contribution, internal power losses and lubrication requirements, they have indeed a direct impact on the engine overall efficiency. Even though nowadays gears have reached very high efficiencies, over 99%, all the power dissipated through losses is converted into heat that must be removed by the lubrication system. Heat reduction is hence beneficial for minimizing lubrication system dimensions that is crucial in aero engine applications where it is mandatory to limit the weight of every component. Among the sources of loss, two main categories may be distinguished: load dependent and load independent losses. The first ones are due to the transmission of torque and have been deeply studied in the last years, the latter are related to fluid-dynamic interaction between gears and the surrounding environment, they are negligible at low pitch line velocities, but become very important in high speed applications, typical of turbomachinery. This work deals with an experimental investigation of the load independent losses due to a couple of spur meshing gears working at different conditions in presence of an oil-jet lubrication system. The test rig allows the gears to rotate, at different velocities up to 15000 rpm, in a controlled environment contained in a sealed box. Test rig pressure can be imposed (0.3–1.0 bar) and monitored as well as the oil jet conditions, in terms of mass flow rate (jet volume flow rate up to 1.65 litres per minute), temperature (80–140 °C) and inclination angle. A high precision bearing-less torque meter, equipped with a speedometer, was exploited to measure at the same time the torque losses and rotating speed. Results of the experimental survey allowed a better understanding of load independent losses at pitch line speed up to 100 m/s and in different environmental conditions.
Windage Losses of a Meshing Gear Pair Measured at Different Working Conditions / Massini, D.; Fondelli, T.; Facchini, B.; Tarchi, L.; Leonardi, F.. - ELETTRONICO. - (2018), pp. 1-8. (Intervento presentato al convegno ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition) [10.1115/GT2018-76823].
Windage Losses of a Meshing Gear Pair Measured at Different Working Conditions
Massini, D.
;Fondelli, T.;Facchini, B.;Tarchi, L.;
2018
Abstract
In recent years the aero-engine community is looking towards the reduction of specific fuel consumption by increasing the efficiency of gearing systems. Considering their weight contribution, internal power losses and lubrication requirements, they have indeed a direct impact on the engine overall efficiency. Even though nowadays gears have reached very high efficiencies, over 99%, all the power dissipated through losses is converted into heat that must be removed by the lubrication system. Heat reduction is hence beneficial for minimizing lubrication system dimensions that is crucial in aero engine applications where it is mandatory to limit the weight of every component. Among the sources of loss, two main categories may be distinguished: load dependent and load independent losses. The first ones are due to the transmission of torque and have been deeply studied in the last years, the latter are related to fluid-dynamic interaction between gears and the surrounding environment, they are negligible at low pitch line velocities, but become very important in high speed applications, typical of turbomachinery. This work deals with an experimental investigation of the load independent losses due to a couple of spur meshing gears working at different conditions in presence of an oil-jet lubrication system. The test rig allows the gears to rotate, at different velocities up to 15000 rpm, in a controlled environment contained in a sealed box. Test rig pressure can be imposed (0.3–1.0 bar) and monitored as well as the oil jet conditions, in terms of mass flow rate (jet volume flow rate up to 1.65 litres per minute), temperature (80–140 °C) and inclination angle. A high precision bearing-less torque meter, equipped with a speedometer, was exploited to measure at the same time the torque losses and rotating speed. Results of the experimental survey allowed a better understanding of load independent losses at pitch line speed up to 100 m/s and in different environmental conditions.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.