Networks are a widely used and efficient paradigm to model real-world systems where basic units interact pairwise. Many body interactions are often at play, and cannot be modelled by resorting to binary exchanges. In this work, we consider a general class of dynamical systems anchored on hypergraphs. Hyperedges of arbitrary size ideally encircle individual units so as to account for multiple, simultaneous interactions. These latter are mediated by a combinatorial Laplacian, that is here introduced and characterised. The formalism of the master stability function is adapted to the present setting. Turing patterns and the synchronisation of non linear (regular and chaotic) oscillators are studied, for a general class of systems evolving on hypergraphs. The response to externally imposed perturbations bears the imprint of the higher order nature of the interactions.
Dynamical systems on Hypergraphs / Timoteo Carletti; Duccio Fanelli; Sara Nicoletti. - In: JOURNAL OF PHYSICS. COMPLEXITY. - ISSN 2632-072X. - ELETTRONICO. - 1:(2020), pp. 1-16. [10.1088/2632-072x/aba8e1]
Dynamical systems on Hypergraphs
Timoteo Carletti
;Duccio Fanelli;Sara Nicoletti
2020
Abstract
Networks are a widely used and efficient paradigm to model real-world systems where basic units interact pairwise. Many body interactions are often at play, and cannot be modelled by resorting to binary exchanges. In this work, we consider a general class of dynamical systems anchored on hypergraphs. Hyperedges of arbitrary size ideally encircle individual units so as to account for multiple, simultaneous interactions. These latter are mediated by a combinatorial Laplacian, that is here introduced and characterised. The formalism of the master stability function is adapted to the present setting. Turing patterns and the synchronisation of non linear (regular and chaotic) oscillators are studied, for a general class of systems evolving on hypergraphs. The response to externally imposed perturbations bears the imprint of the higher order nature of the interactions.File | Dimensione | Formato | |
---|---|---|---|
Carletti_2020_J._Phys._Complex._1_035006.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
2.57 MB
Formato
Adobe PDF
|
2.57 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.