The habitat, actuopaleontology and global fossil record of crown cetaceans, today occupying apex positions in the marine ecosystem, is reviewed. A large Neogene-Quaternary dataset is built, covering the time span of the evolutionary radiation of crown Odontoceti and Mysticeti and including updated information on whale taxonomy, chronostratigraphy, geography, paleoenvironment, taphonomy and size. We outline an uneven chronostratigraphic and geographic distribution of fossils, which influences our understanding of global diversity trends. Notwithstanding the vast majority of whale carcasses sinks to bathyal depths, the fossil record is mainly associated with shelf paleoenvironments. The evolution of gigantic whales triggered the radiation of whale-fall communities, including a global bone-eating fauna that hampers the preservation of carcasses at bathyal depths. This “Osedax” effect may explain the unexpected distribution of the fossil record, particularly in the Pleistocene, when baleen whales became gigantic and the ecosystem engineers they are today. A review of the relative thickness of Pleistocene marine strata rules out artefacts of the rock record. The distribution of taphonomic grades suggests that the average skeletal completeness decreases during the Neogene and Quaternary, consistently with an increased efficiency of bioeroders. The frequency of complete and articulated skeletons is time-independent, suggesting a control by sedimentation rates. Quality of the record is expected to improve particularly from taxonomic studies dedicated to the rich, but unexplored South american record, documenting the record of little known productive regions, such as Africa, the Arctic and Antarctica, and the taphonomy and stratigraphic paleobiology of old and new findings.
The awkward record of fossil whales / Dominici S.; Danise S.; Cau S.; Freschi A.. - In: EARTH-SCIENCE REVIEWS. - ISSN 0012-8252. - ELETTRONICO. - 205:(2020), pp. 103057-103057. [10.1016/j.earscirev.2019.103057]
The awkward record of fossil whales
Danise S.;
2020
Abstract
The habitat, actuopaleontology and global fossil record of crown cetaceans, today occupying apex positions in the marine ecosystem, is reviewed. A large Neogene-Quaternary dataset is built, covering the time span of the evolutionary radiation of crown Odontoceti and Mysticeti and including updated information on whale taxonomy, chronostratigraphy, geography, paleoenvironment, taphonomy and size. We outline an uneven chronostratigraphic and geographic distribution of fossils, which influences our understanding of global diversity trends. Notwithstanding the vast majority of whale carcasses sinks to bathyal depths, the fossil record is mainly associated with shelf paleoenvironments. The evolution of gigantic whales triggered the radiation of whale-fall communities, including a global bone-eating fauna that hampers the preservation of carcasses at bathyal depths. This “Osedax” effect may explain the unexpected distribution of the fossil record, particularly in the Pleistocene, when baleen whales became gigantic and the ecosystem engineers they are today. A review of the relative thickness of Pleistocene marine strata rules out artefacts of the rock record. The distribution of taphonomic grades suggests that the average skeletal completeness decreases during the Neogene and Quaternary, consistently with an increased efficiency of bioeroders. The frequency of complete and articulated skeletons is time-independent, suggesting a control by sedimentation rates. Quality of the record is expected to improve particularly from taxonomic studies dedicated to the rich, but unexplored South american record, documenting the record of little known productive regions, such as Africa, the Arctic and Antarctica, and the taphonomy and stratigraphic paleobiology of old and new findings.File | Dimensione | Formato | |
---|---|---|---|
Dominici et al revised version.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
13.4 MB
Formato
Adobe PDF
|
13.4 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.