In the future, social robots will permeate our daily life. An autonomous robot that has to move among different buildings needs to manage huge amount of data, as a consequence it is clear that the configuration of the navigation system becomes hard to manage. This paper presents a system, based on a cloud robotics paradigm, conceived to allow autonomous robots to navigate in indoor environment, which are not known a priori. The environment is divided into sub-maps and all the necessary information and the topological representation of the world, are stored into a remote cloud infrastructure. By means of specific environmental tags, composed of a set of ARTags and QR codes, the robot gets the access to the cloud service and it is able to update its navigation configuration in a dynamic and automatic way. Experiments have been conducted in order to choose an appropriate marker dimension and to demonstrate the feasibility of the proposed procedure.
Enabling Global Robot Navigation Based on a Cloud Robotics Approach / LIMOSANI, Raffaele; MANZI, Alessandro; FIORINI, Laura; CAVALLO, Filippo; DARIO, Paolo. - In: INTERNATIONAL JOURNAL OF SOCIAL ROBOTICS. - ISSN 1875-4791. - ELETTRONICO. - 8:(2016), pp. 371-380. [10.1007/s12369-016-0349-8]
Enabling Global Robot Navigation Based on a Cloud Robotics Approach
FIORINI, Laura;CAVALLO, Filippo;
2016
Abstract
In the future, social robots will permeate our daily life. An autonomous robot that has to move among different buildings needs to manage huge amount of data, as a consequence it is clear that the configuration of the navigation system becomes hard to manage. This paper presents a system, based on a cloud robotics paradigm, conceived to allow autonomous robots to navigate in indoor environment, which are not known a priori. The environment is divided into sub-maps and all the necessary information and the topological representation of the world, are stored into a remote cloud infrastructure. By means of specific environmental tags, composed of a set of ARTags and QR codes, the robot gets the access to the cloud service and it is able to update its navigation configuration in a dynamic and automatic way. Experiments have been conducted in order to choose an appropriate marker dimension and to demonstrate the feasibility of the proposed procedure.File | Dimensione | Formato | |
---|---|---|---|
IP015 - Enabling Global Robot Navigation.pdf
Accesso chiuso
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.