The Arctic is an important natural laboratory that is extremely sensitive to climatic changes and its monitoring is, therefore, of great importance. Due to the environmental extremes it is often hard to deploy sensors and observations are limited to a few sparse observation points limiting the spatial and temporal coverage of the Arctic measurement. Given these constraints the possibility of deploying a rugged network of low-cost sensors remains an interesting and convenient option. The present work validates for the first time a low-cost sensor array (AIRQino) for monitoring basic meteorological parameters and atmospheric composition in the Arctic (air temperature, relative humidity, particulate matter, and CO2). AIRQino was deployed for one year in the Svalbard archipelago and its outputs compared with reference sensors. Results show good agreement with the reference meteorological parameters (air temperature (T) and relative humidity (RH)) with correlation coefficients above 0.8 and small absolute errors (≈1°C for temperature and ≈6% for RH). Particulate matter (PM) low-cost sensors show a good linearity (r2 ≈ 0.8) and small absolute errors for both PM2.5 and PM10 (≈1 µg m−3 for PM2.5 and ≈3 µg m−3 for PM10), while overall accuracy is impacted both by the unknown composition of the local aerosol, and by high humidity conditions likely generating hygroscopic effects. CO2 exhibits a satisfying agreement with r2 around 0.70 and an absolute error of ≈23 mg m−3. Overall these results, coupled with an excellent data coverage and scarce need of maintenance make the AIRQino or similar devices integrations an interesting tool for future extended sensor networks also in the Arctic environment.

Long-term performance assessment of low-cost atmospheric sensors in the arctic environment / Carotenuto F.; Brilli L.; Gioli B.; Gualtieri G.; Vagnoli C.; Mazzola M.; Viola A.P.; Vitale V.; Severi M.; Traversi R.; Zaldei A.. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 20:(2020), pp. 0-0. [10.3390/s20071919]

Long-term performance assessment of low-cost atmospheric sensors in the arctic environment

Severi M.;Traversi R.;
2020

Abstract

The Arctic is an important natural laboratory that is extremely sensitive to climatic changes and its monitoring is, therefore, of great importance. Due to the environmental extremes it is often hard to deploy sensors and observations are limited to a few sparse observation points limiting the spatial and temporal coverage of the Arctic measurement. Given these constraints the possibility of deploying a rugged network of low-cost sensors remains an interesting and convenient option. The present work validates for the first time a low-cost sensor array (AIRQino) for monitoring basic meteorological parameters and atmospheric composition in the Arctic (air temperature, relative humidity, particulate matter, and CO2). AIRQino was deployed for one year in the Svalbard archipelago and its outputs compared with reference sensors. Results show good agreement with the reference meteorological parameters (air temperature (T) and relative humidity (RH)) with correlation coefficients above 0.8 and small absolute errors (≈1°C for temperature and ≈6% for RH). Particulate matter (PM) low-cost sensors show a good linearity (r2 ≈ 0.8) and small absolute errors for both PM2.5 and PM10 (≈1 µg m−3 for PM2.5 and ≈3 µg m−3 for PM10), while overall accuracy is impacted both by the unknown composition of the local aerosol, and by high humidity conditions likely generating hygroscopic effects. CO2 exhibits a satisfying agreement with r2 around 0.70 and an absolute error of ≈23 mg m−3. Overall these results, coupled with an excellent data coverage and scarce need of maintenance make the AIRQino or similar devices integrations an interesting tool for future extended sensor networks also in the Arctic environment.
2020
20
0
0
Goal 13: Climate action
Carotenuto F.; Brilli L.; Gioli B.; Gualtieri G.; Vagnoli C.; Mazzola M.; Viola A.P.; Vitale V.; Severi M.; Traversi R.; Zaldei A.
File in questo prodotto:
File Dimensione Formato  
87 Carotenuto et al. Sensors 2020.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 2.46 MB
Formato Adobe PDF
2.46 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1211713
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact