Cistus x incanus L. is a Mediterranean evergreen shrub used in folk medicine for the treatment of inflammatory disorders but the underlying mechanisms are not fully understood. We therefore investigated the anti-inflammatory effects of an ethyl acetate fraction (EAF) from C. x incanus L. leaves on lipopolysaccharide (LPS) activated RAW 264.7 macrophages. HPLC analysis revealed myricetin and quercetin derivatives to be the major compounds in EAF; EAF up to 1 µM of total phenolic content, was not cytotoxic and inhibited the mRNA expression of interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) (p < 0.05) and the production of prostaglandins E2 (PGE2) (p < 0.05). Meanwhile, EAF triggered the mRNA expression of interleukin-10 (IL-10) and elicited the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), as well as the expression of its main target gene, heme oxygenase-1 (HO-1) (p < 0.05). These data indicate that EAF attenuates experimental inflammation via the inhibition of proinflammatory mediators and at least in part, by the activation of Nrf2/HO-1 pathway. These effects are likely due to myricetin and quercetin derivatives but the role of other, less abundant components cannot be excluded. Further studies to confirm the relevance of our findings in animal models and to highlight the relative contribution of each component to the anti-inflammatory activity of EAF should be conducted.

Ethyl acetate extract from Cistus x incanus L. leaves enriched in myricetin and quercetin derivatives, inhibits inflammatory mediators and activates Nrf2/HO-1 pathway in LPS-stimulated RAW 264.7 macrophages / D'Ambrosio, Mario; Bigagli, Elisabetta; Cinci, Lorenzo; Gori, Antonella; Brunetti, Cecilia; Ferrini, Francesco; Luceri, Cristina. - In: ZEITSCHRIFT FUR NATURFORSCHUNG. C, A JOURNAL OF BIOSCIENCES. - ISSN 1865-7125. - ELETTRONICO. - 0:(2020), pp. 0-0. [10.1515/znc-2020-0053]

Ethyl acetate extract from Cistus x incanus L. leaves enriched in myricetin and quercetin derivatives, inhibits inflammatory mediators and activates Nrf2/HO-1 pathway in LPS-stimulated RAW 264.7 macrophages

D'Ambrosio, Mario;Bigagli, Elisabetta
;
Cinci, Lorenzo;Gori, Antonella;Ferrini, Francesco;Luceri, Cristina
2020

Abstract

Cistus x incanus L. is a Mediterranean evergreen shrub used in folk medicine for the treatment of inflammatory disorders but the underlying mechanisms are not fully understood. We therefore investigated the anti-inflammatory effects of an ethyl acetate fraction (EAF) from C. x incanus L. leaves on lipopolysaccharide (LPS) activated RAW 264.7 macrophages. HPLC analysis revealed myricetin and quercetin derivatives to be the major compounds in EAF; EAF up to 1 µM of total phenolic content, was not cytotoxic and inhibited the mRNA expression of interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) (p < 0.05) and the production of prostaglandins E2 (PGE2) (p < 0.05). Meanwhile, EAF triggered the mRNA expression of interleukin-10 (IL-10) and elicited the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), as well as the expression of its main target gene, heme oxygenase-1 (HO-1) (p < 0.05). These data indicate that EAF attenuates experimental inflammation via the inhibition of proinflammatory mediators and at least in part, by the activation of Nrf2/HO-1 pathway. These effects are likely due to myricetin and quercetin derivatives but the role of other, less abundant components cannot be excluded. Further studies to confirm the relevance of our findings in animal models and to highlight the relative contribution of each component to the anti-inflammatory activity of EAF should be conducted.
2020
0
0
0
Goal 3: Good health and well-being for people
D'Ambrosio, Mario; Bigagli, Elisabetta; Cinci, Lorenzo; Gori, Antonella; Brunetti, Cecilia; Ferrini, Francesco; Luceri, Cristina
File in questo prodotto:
File Dimensione Formato  
10.1515_znc-2020-0053.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 579.66 kB
Formato Adobe PDF
579.66 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1213048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact