Abstract Context Pathogenesis of autonomous steroid secretion and adrenocortical tumorigenesis remains partially obscure. Objective To investigate the relationship between transcriptome profile and genetic background in a large series of adrenocortical tumors and identify new potential pathogenetic mechanisms. Design Cross-sectional study. Setting University Hospitals of the European Network for the Study of Adrenal Tumors (ENSAT). Patients We collected snap-frozen tissue from patients with adrenocortical tumors (n = 59) with known genetic background: 26 adenomas with Cushing syndrome (CS- cortisol-producing adenoma [CPA]), 17 adenomas with mild autonomous cortisol secretion (MACS-CPAs), 9 endocrine-inactive adenomas (EIAs), and 7 adrenocortical carcinomas (ACCs). Intervention Ribonucleic acid (RNA) sequencing. Main Outcome Measures Gene expression, long noncoding RNA (lncRNA) expression, and gene fusions. Correlation with genetic background defined by targeted Sanger sequencing, targeted panel- or whole-exome sequencing. Results Transcriptome analysis identified 2 major clusters for adenomas: Cluster 1 (n = 32) mainly consisting of MACS-CPAs with CTNNB1 or without identified driver mutations (46.9% of cases) and 8/9 EIAs; Cluster 2 (n = 18) that comprised CP-CPAs with or without identified driver mutation in 83.3% of cases (including all CS-CPAs with PRKACA mutation). Two CS-CPAs, 1 with CTNNB1 and 1 with GNAS mutation, clustered separately and relatively close to ACC. lncRNA analysis well differentiate adenomas from ACCs. Novel gene fusions were found, including AKAP13-PDE8A in one CS-CPA sample with no driver mutation. Conclusions MACS-CPAs and EIAs showed a similar transcriptome profile, independently of the genetic background, whereas most CS-CPAs clustered together. Still unrevealed molecular alterations in the cAMP/PKA or Wnt/beta catenin pathways might be involved in the pathogenesis of adrenocortical tumors.

RNA Sequencing and Somatic Mutation Status of Adrenocortical Tumors: Novel Pathogenetic Insights / Di Dalmazi G, Altieri B, Scholz C, Sbiera S, Luconi M, Waldman J, Kastelan D, Ceccato F, Chiodini I, Arnaldi G, Riester A, Osswald A, Beuschlein F, Sauer S, Fassnacht M, Appenzeller S, Ronchi CL.. - In: THE JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM. - ISSN 0021-972X. - STAMPA. - 105:(2020), pp. 4459-4473. [10.1210/clinem/dgaa616]

RNA Sequencing and Somatic Mutation Status of Adrenocortical Tumors: Novel Pathogenetic Insights.

Luconi M;
2020

Abstract

Abstract Context Pathogenesis of autonomous steroid secretion and adrenocortical tumorigenesis remains partially obscure. Objective To investigate the relationship between transcriptome profile and genetic background in a large series of adrenocortical tumors and identify new potential pathogenetic mechanisms. Design Cross-sectional study. Setting University Hospitals of the European Network for the Study of Adrenal Tumors (ENSAT). Patients We collected snap-frozen tissue from patients with adrenocortical tumors (n = 59) with known genetic background: 26 adenomas with Cushing syndrome (CS- cortisol-producing adenoma [CPA]), 17 adenomas with mild autonomous cortisol secretion (MACS-CPAs), 9 endocrine-inactive adenomas (EIAs), and 7 adrenocortical carcinomas (ACCs). Intervention Ribonucleic acid (RNA) sequencing. Main Outcome Measures Gene expression, long noncoding RNA (lncRNA) expression, and gene fusions. Correlation with genetic background defined by targeted Sanger sequencing, targeted panel- or whole-exome sequencing. Results Transcriptome analysis identified 2 major clusters for adenomas: Cluster 1 (n = 32) mainly consisting of MACS-CPAs with CTNNB1 or without identified driver mutations (46.9% of cases) and 8/9 EIAs; Cluster 2 (n = 18) that comprised CP-CPAs with or without identified driver mutation in 83.3% of cases (including all CS-CPAs with PRKACA mutation). Two CS-CPAs, 1 with CTNNB1 and 1 with GNAS mutation, clustered separately and relatively close to ACC. lncRNA analysis well differentiate adenomas from ACCs. Novel gene fusions were found, including AKAP13-PDE8A in one CS-CPA sample with no driver mutation. Conclusions MACS-CPAs and EIAs showed a similar transcriptome profile, independently of the genetic background, whereas most CS-CPAs clustered together. Still unrevealed molecular alterations in the cAMP/PKA or Wnt/beta catenin pathways might be involved in the pathogenesis of adrenocortical tumors.
2020
105
4459
4473
Goal 3: Good health and well-being for people
Di Dalmazi G, Altieri B, Scholz C, Sbiera S, Luconi M, Waldman J, Kastelan D, Ceccato F, Chiodini I, Arnaldi G, Riester A, Osswald A, Beuschlein F, Sauer S, Fassnacht M, Appenzeller S, Ronchi CL.
File in questo prodotto:
File Dimensione Formato  
Didalmazi jcem2020.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 6.19 MB
Formato Adobe PDF
6.19 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1213634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact