We propose parametric tests for serial correlation in levels and squares that exploit thenon-normalityoffinancialreturns.Ourtestsarerobusttodistributionalmisspecification.Furthermore, our mean predictability tests can be robustified against time-varyingvolatility. Local power analyses confirm their gains over existing methods, while MonteCarlo exercises assess their finite sample reliability. We apply our tests to quarterlyreturns on the five Fama–French factors for international stocks, whose distributionsare mostly symmetric but fat-tailed. Our results highlight noticeable differences acrossregions and factors and confirm the numerical sensitivity of the usual tests to influentialobservations

New testing approaches for mean–variance predictability / Fiorentini, Gabriele; Sentana, Enrique. - In: JOURNAL OF ECONOMETRICS. - ISSN 0304-4076. - STAMPA. - 222:(2021), pp. 516-538. [10.1016/j.jeconom.2020.07.014]

New testing approaches for mean–variance predictability

Fiorentini, Gabriele;
2021

Abstract

We propose parametric tests for serial correlation in levels and squares that exploit thenon-normalityoffinancialreturns.Ourtestsarerobusttodistributionalmisspecification.Furthermore, our mean predictability tests can be robustified against time-varyingvolatility. Local power analyses confirm their gains over existing methods, while MonteCarlo exercises assess their finite sample reliability. We apply our tests to quarterlyreturns on the five Fama–French factors for international stocks, whose distributionsare mostly symmetric but fat-tailed. Our results highlight noticeable differences acrossregions and factors and confirm the numerical sensitivity of the usual tests to influentialobservations
2021
222
516
538
Goal 4: Quality education
Fiorentini, Gabriele; Sentana, Enrique
File in questo prodotto:
File Dimensione Formato  
JEcon6.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 3.04 MB
Formato Adobe PDF
3.04 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1213920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact