Sample degeneracy in Approximate Bayesian Computation (ABC) is caused by the difficulty of simulating pseudo-data matching the observed data. In order to mitigate the resulting waste of computational resources and/or bias in the posterior distribution approximation, we propose to weight each parameter proposal by treating the generation of matching pseudo-data, given a “poor” parameter proposal, as a rare event in the sense of Sanov’s Theorem. We experimentally evaluate our methodology through a proof-of-concept implementation.
Improving ABC via large deviations theory / Cecilia Viscardi; Fabio Corradi; Michele Boreale. - ELETTRONICO. - (2020), pp. 673-678. (Intervento presentato al convegno 50th Meeting of the Italian Statistical Society).
Improving ABC via large deviations theory
Cecilia Viscardi;Fabio Corradi;Michele Boreale
2020
Abstract
Sample degeneracy in Approximate Bayesian Computation (ABC) is caused by the difficulty of simulating pseudo-data matching the observed data. In order to mitigate the resulting waste of computational resources and/or bias in the posterior distribution approximation, we propose to weight each parameter proposal by treating the generation of matching pseudo-data, given a “poor” parameter proposal, as a rare event in the sense of Sanov’s Theorem. We experimentally evaluate our methodology through a proof-of-concept implementation.File | Dimensione | Formato | |
---|---|---|---|
estratto2.pdf
accesso aperto
Descrizione: Comunicazione a Convegno
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
215.64 kB
Formato
Adobe PDF
|
215.64 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.