Sample degeneracy in Approximate Bayesian Computation (ABC) is caused by the difficulty of simulating pseudo-data matching the observed data. In order to mitigate the resulting waste of computational resources and/or bias in the posterior distribution approximation, we propose to weight each parameter proposal by treating the generation of matching pseudo-data, given a “poor” parameter proposal, as a rare event in the sense of Sanov’s Theorem. We experimentally evaluate our methodology through a proof-of-concept implementation.

Improving ABC via large deviations theory / Cecilia Viscardi; Fabio Corradi; Michele Boreale. - ELETTRONICO. - (2020), pp. 673-678. (Intervento presentato al convegno 50th Meeting of the Italian Statistical Society).

Improving ABC via large deviations theory

Cecilia Viscardi;Fabio Corradi;Michele Boreale
2020

Abstract

Sample degeneracy in Approximate Bayesian Computation (ABC) is caused by the difficulty of simulating pseudo-data matching the observed data. In order to mitigate the resulting waste of computational resources and/or bias in the posterior distribution approximation, we propose to weight each parameter proposal by treating the generation of matching pseudo-data, given a “poor” parameter proposal, as a rare event in the sense of Sanov’s Theorem. We experimentally evaluate our methodology through a proof-of-concept implementation.
2020
Book of short papers SIS 2020
50th Meeting of the Italian Statistical Society
Cecilia Viscardi; Fabio Corradi; Michele Boreale
File in questo prodotto:
File Dimensione Formato  
estratto2.pdf

accesso aperto

Descrizione: Comunicazione a Convegno
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 215.64 kB
Formato Adobe PDF
215.64 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1215267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact