Variational hybrid quantum-classical optimization is one of the most promising avenues to show the advantages of noisy intermediate-scale quantum computers in solving hard problems, such as finding the minimum-energy state of a Hamiltonian or solving some machine-learning tasks. In these devices, noise is unavoidable and impossible to error correct, yet its role in the optimization process is not well understood, especially from the theoretical viewpoint. Here we consider a minimization problem with respect to a variational state, iteratively obtained via a parametric quantum circuit, taking into account both the role of noise and the stochastic nature of quantum measurement outcomes. We show that the accuracy of the result obtained for a fixed number of iterations is bounded by a quantity related to the quantum Fisher information of the variational state. Using this bound, we study the convergence property of the quantum approximate optimization algorithm under realistic noise models, showing the robustness of the algorithm against different noise strengths.
Noise-resilient variational hybrid quantum-classical optimization / Gentini Laura, Cuccoli Alessandro, Pirandola Stefano, Verrucchi Paola, Banchi Leonardo. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - STAMPA. - 102:(2020), pp. 052414-1-052414-11. [10.1103/PhysRevA.102.052414]
Noise-resilient variational hybrid quantum-classical optimization
Gentini Laura;Cuccoli Alessandro;Verrucchi Paola;Banchi Leonardo
2020
Abstract
Variational hybrid quantum-classical optimization is one of the most promising avenues to show the advantages of noisy intermediate-scale quantum computers in solving hard problems, such as finding the minimum-energy state of a Hamiltonian or solving some machine-learning tasks. In these devices, noise is unavoidable and impossible to error correct, yet its role in the optimization process is not well understood, especially from the theoretical viewpoint. Here we consider a minimization problem with respect to a variational state, iteratively obtained via a parametric quantum circuit, taking into account both the role of noise and the stochastic nature of quantum measurement outcomes. We show that the accuracy of the result obtained for a fixed number of iterations is bounded by a quantity related to the quantum Fisher information of the variational state. Using this bound, we study the convergence property of the quantum approximate optimization algorithm under realistic noise models, showing the robustness of the algorithm against different noise strengths.File | Dimensione | Formato | |
---|---|---|---|
2020GCPVB.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.