Objectives Optical coherence tomography (OCT) was used to investigate integrity and expansion of bioresorbable drug-eluting scaffolds (BVS) after high-pressure postdilation (HPPD). Background Because of concerns about the risk of BVS damage, postdilation was not recommended and applied in the existing randomized studies and most registries. Recent real world data suggest incomplete BVS expansion cause higher rates of thrombosis. In vivo confirmation of the safety of high pressure postdilation is of paramount importance. Methods Data from final OCT examination of consecutive implanted BVS, postdilated with noncompliant (NC) balloons at pressure ≥24 atm were analyzed. The following stent performance indices were assessed with OCT: mean and minimal lumen and scaffold area, residual area stenosis (RAS), incomplete strut apposition (ISA), tissue prolapse, eccentricity index (EI), symmetry index (SI), strut fractures, and edge dissections. Result Twenty-two BVS postdilated at high pressure were analyzed. The average maximal postdilation balloon inflation (maxPD) was 28 ± 3 atm. High pressure OPN NC Balloon (SIS Medical AG, Winterthur Switzerland) was used in 41% of postdilations with a maximal PD of 30 ± 4.7 atm. Final mean and minimal lumen area were 6.8 ± 1.4 and 5.5 ± 1.4 mm2, respectively. OCT showed low percentage of RAS (16 ± 9.6%), and low percentage of ISA (1.8 ± 2.4%). Mean EI was 0.86 ± 0.02 and SI 0.35 ± 0.14. OCT analysis showed one edge dissection and no scaffold fractures. Conclusions BVS deployment optimization using HPPD does not cause BVS disruption and is associated with a good BVS expansion, low rate of strut malapposition and edge dissections.
Is high pressure postdilation safe in bioresorbable vascular scaffolds? Optical coherence tomography observations after noncompliant balloons inflated at more than 24 atmospheres / Fabris E.; Caiazzo G.; Kilic I.D.; Serdoz R.; Secco G.G.; Sinagra G.; Lee R.; Foin N.; Di Mario C.. - In: CATHETERIZATION AND CARDIOVASCULAR INTERVENTIONS. - ISSN 1522-1946. - ELETTRONICO. - 87:(2016), pp. 839-846. [10.1002/ccd.26222]
Is high pressure postdilation safe in bioresorbable vascular scaffolds? Optical coherence tomography observations after noncompliant balloons inflated at more than 24 atmospheres
Sinagra G.;Di Mario C.
2016
Abstract
Objectives Optical coherence tomography (OCT) was used to investigate integrity and expansion of bioresorbable drug-eluting scaffolds (BVS) after high-pressure postdilation (HPPD). Background Because of concerns about the risk of BVS damage, postdilation was not recommended and applied in the existing randomized studies and most registries. Recent real world data suggest incomplete BVS expansion cause higher rates of thrombosis. In vivo confirmation of the safety of high pressure postdilation is of paramount importance. Methods Data from final OCT examination of consecutive implanted BVS, postdilated with noncompliant (NC) balloons at pressure ≥24 atm were analyzed. The following stent performance indices were assessed with OCT: mean and minimal lumen and scaffold area, residual area stenosis (RAS), incomplete strut apposition (ISA), tissue prolapse, eccentricity index (EI), symmetry index (SI), strut fractures, and edge dissections. Result Twenty-two BVS postdilated at high pressure were analyzed. The average maximal postdilation balloon inflation (maxPD) was 28 ± 3 atm. High pressure OPN NC Balloon (SIS Medical AG, Winterthur Switzerland) was used in 41% of postdilations with a maximal PD of 30 ± 4.7 atm. Final mean and minimal lumen area were 6.8 ± 1.4 and 5.5 ± 1.4 mm2, respectively. OCT showed low percentage of RAS (16 ± 9.6%), and low percentage of ISA (1.8 ± 2.4%). Mean EI was 0.86 ± 0.02 and SI 0.35 ± 0.14. OCT analysis showed one edge dissection and no scaffold fractures. Conclusions BVS deployment optimization using HPPD does not cause BVS disruption and is associated with a good BVS expansion, low rate of strut malapposition and edge dissections.File | Dimensione | Formato | |
---|---|---|---|
Fabris E Cathet Cardiovac Diagnosis 2016;839-846.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
944.71 kB
Formato
Adobe PDF
|
944.71 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.