Pistacia lentiscus leaves are used in several applications, thanks to their polyphenolic abundance. Thiswork aimed to characterize the polyphenols and to optimize the extraction conditions to shorten the time, decrease the consumption of solvent, and to maximize the yield of different classes of phenolics, which have diverse industrial applications. The variables were optimized by applying a Box–Behnken design. Galloyl and myricetin derivatives were the most abundant compounds, and two new tetragalloyl derivatives were identified by LC-MS/MS. According to the models, the maximum yields of polyphenols (51.3 ± 1.8 mg g−1 DW) and tannins (40.2 ± 1.4 mg g−1 DW) were obtained using 0.12 L g−1 of 40% ethanol at 50◦C. The highest content of flavonoids (10.2 ± 0.8 mg g−1 DW) was obtained using 0.13 L g−1 of 50% ethanol at 50◦C, while 0.1 L g−1 of 30% ethanol at 30◦C resulted in higher amounts of myricitrin (2.6 ± 0.19 mg g−1 DW). Our optimized extraction decreased the ethanolic fraction by 25% and halved the time compared to other methods. These conditions can be applied differently to obtain P. lentiscus extracts richer in tannins or flavonoids, which might be employed for various purposes.

Optimization of a green ultrasound-assisted extraction of different polyphenols from pistacia lentiscus L. Leaves using a response surface methodology / Detti C.; Nascimento L.B.S.; Brunetti C.; Ferrini F.; Gori A.. - In: PLANTS. - ISSN 2223-7747. - STAMPA. - 9 , Issue 11:(2020), pp. 1-17. [10.3390/plants9111482]

Optimization of a green ultrasound-assisted extraction of different polyphenols from pistacia lentiscus L. Leaves using a response surface methodology

Detti C.;Brunetti C.;Ferrini F.;Gori A.
2020

Abstract

Pistacia lentiscus leaves are used in several applications, thanks to their polyphenolic abundance. Thiswork aimed to characterize the polyphenols and to optimize the extraction conditions to shorten the time, decrease the consumption of solvent, and to maximize the yield of different classes of phenolics, which have diverse industrial applications. The variables were optimized by applying a Box–Behnken design. Galloyl and myricetin derivatives were the most abundant compounds, and two new tetragalloyl derivatives were identified by LC-MS/MS. According to the models, the maximum yields of polyphenols (51.3 ± 1.8 mg g−1 DW) and tannins (40.2 ± 1.4 mg g−1 DW) were obtained using 0.12 L g−1 of 40% ethanol at 50◦C. The highest content of flavonoids (10.2 ± 0.8 mg g−1 DW) was obtained using 0.13 L g−1 of 50% ethanol at 50◦C, while 0.1 L g−1 of 30% ethanol at 30◦C resulted in higher amounts of myricitrin (2.6 ± 0.19 mg g−1 DW). Our optimized extraction decreased the ethanolic fraction by 25% and halved the time compared to other methods. These conditions can be applied differently to obtain P. lentiscus extracts richer in tannins or flavonoids, which might be employed for various purposes.
2020
9 , Issue 11
1
17
Goal 15: Life on land
Detti C.; Nascimento L.B.S.; Brunetti C.; Ferrini F.; Gori A.
File in questo prodotto:
File Dimensione Formato  
plants-09-01482-v2.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1216655
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact