Objectives: We used optical coherence tomography, which has a resolution of <20 μm, to analyze thin layers of neointima in rapamycin-eluting coronary stents. Background: Lack of neointimal coverage has been implicated in the pathogenesis of drug-eluting coronary stent thrombosis. Angiography and intracoronary ultrasound lack the resolution to examine this. Methods: We conducted a randomized trial in patients receiving polymer-coated rapamycin-eluting stents (Cypher, Cordis, Johnson & Johnson, Miami, Florida) and nonpolymer rapamycin-eluting stents (Yukon, Translumina, Hechingen, Germany) to examine neointimal thickness, stent strut coverage, and protrusion at 90 days. Twenty-four patients (n = 12 for each group) underwent stent deployment and invasive follow-up at 90 days with optical coherence tomography. The primary end point was binary stent strut coverage. Coprimary end points were neointimal thickness and stent strut luminal protrusion. Results: No patient had angiographic restenosis. For polymer-coated and nonpolymer rapamycin-eluting stents, respectively, mean (SD), neointimal thickness was 77.2 (25.6) μm versus 191.2 (86.7) μm (p < 0.001). Binary stent strut coverage was 88.3% (11.8) versus 97.2% (6.1) (p = 0.030). Binary stent strut protrusion was 26.5% (17.5) versus 4.8% (8.6) (p = 0.001). Conclusions: Mean neointimal thickness for the polymer-coated rapamycin-eluting stent was significantly less than the nonpolymer rapamycin-eluting stent but as a result coverage was not homogenous, with >10% of struts being uncovered. High-resolution imaging allowed development of the concept of the protrusion index, and >25% of struts protruded into the vessel lumen with the polymer-coated rapamycin-eluting stent compared with <5% with the nonpolymer rapamycin-eluting stent. These findings may have important implications for the risk of stent thrombosis and, therefore, future stent design. (An optical coherence tomography study to determine stent coverage in polymer coated versus bare metal rapamycin eluting stents. ORCA 1, from the Optimal Revascularization of the Coronary Arteries group; ISRCTN42475919). © 2009 American College of Cardiology Foundation.

A Randomized Optical Coherence Tomography Study of Coronary Stent Strut Coverage and Luminal Protrusion With Rapamycin-Eluting Stents / Moore P.; Barlis P.; Spiro J.; Ghimire G.; Roughton M.; Di Mario C.; Wallis W.; Ilsley C.; Mitchell A.; Mason M.; Kharbanda R.; Vincent P.; Sherwin S.; Dalby M.. - In: JACC: CARDIOVASCULAR INTERVENTIONS. - ISSN 1936-8798. - ELETTRONICO. - 2:(2009), pp. 437-444. [10.1016/j.jcin.2009.01.010]

A Randomized Optical Coherence Tomography Study of Coronary Stent Strut Coverage and Luminal Protrusion With Rapamycin-Eluting Stents

Di Mario C.;
2009

Abstract

Objectives: We used optical coherence tomography, which has a resolution of <20 μm, to analyze thin layers of neointima in rapamycin-eluting coronary stents. Background: Lack of neointimal coverage has been implicated in the pathogenesis of drug-eluting coronary stent thrombosis. Angiography and intracoronary ultrasound lack the resolution to examine this. Methods: We conducted a randomized trial in patients receiving polymer-coated rapamycin-eluting stents (Cypher, Cordis, Johnson & Johnson, Miami, Florida) and nonpolymer rapamycin-eluting stents (Yukon, Translumina, Hechingen, Germany) to examine neointimal thickness, stent strut coverage, and protrusion at 90 days. Twenty-four patients (n = 12 for each group) underwent stent deployment and invasive follow-up at 90 days with optical coherence tomography. The primary end point was binary stent strut coverage. Coprimary end points were neointimal thickness and stent strut luminal protrusion. Results: No patient had angiographic restenosis. For polymer-coated and nonpolymer rapamycin-eluting stents, respectively, mean (SD), neointimal thickness was 77.2 (25.6) μm versus 191.2 (86.7) μm (p < 0.001). Binary stent strut coverage was 88.3% (11.8) versus 97.2% (6.1) (p = 0.030). Binary stent strut protrusion was 26.5% (17.5) versus 4.8% (8.6) (p = 0.001). Conclusions: Mean neointimal thickness for the polymer-coated rapamycin-eluting stent was significantly less than the nonpolymer rapamycin-eluting stent but as a result coverage was not homogenous, with >10% of struts being uncovered. High-resolution imaging allowed development of the concept of the protrusion index, and >25% of struts protruded into the vessel lumen with the polymer-coated rapamycin-eluting stent compared with <5% with the nonpolymer rapamycin-eluting stent. These findings may have important implications for the risk of stent thrombosis and, therefore, future stent design. (An optical coherence tomography study to determine stent coverage in polymer coated versus bare metal rapamycin eluting stents. ORCA 1, from the Optimal Revascularization of the Coronary Arteries group; ISRCTN42475919). © 2009 American College of Cardiology Foundation.
2009
2
437
444
Goal 3: Good health and well-being for people
Moore P.; Barlis P.; Spiro J.; Ghimire G.; Roughton M.; Di Mario C.; Wallis W.; Ilsley C.; Mitchell A.; Mason M.; Kharbanda R.; Vincent P.; Sherwin S....espandi
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1936879809001447-main.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1216928
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 58
social impact