We shall establish the interior Holder continuity for locally bounded weak solutions to a class of parabolic singular equations whose prototypes are u_t = ∇ · (|∇u|^(p−2)∇u), for 1 < p < 2, and u_t − ∇ · (u^(m−1)|∇u|^(p−2)∇u) = 0, for m + p > 3 −p/N via a new and simplified proof using recent techniques on expansion of positivity and L1-Harnack estimates

A new short proof of regularity for local weak solutions for a certain class of singular parabolic equations / Vincenzo Vespri; Simone Ciani. - In: RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI. - ISSN 2532-3350. - ELETTRONICO. - 41:(2020), pp. 251-264.

A new short proof of regularity for local weak solutions for a certain class of singular parabolic equations

Vincenzo Vespri
;
Simone Ciani
2020

Abstract

We shall establish the interior Holder continuity for locally bounded weak solutions to a class of parabolic singular equations whose prototypes are u_t = ∇ · (|∇u|^(p−2)∇u), for 1 < p < 2, and u_t − ∇ · (u^(m−1)|∇u|^(p−2)∇u) = 0, for m + p > 3 −p/N via a new and simplified proof using recent techniques on expansion of positivity and L1-Harnack estimates
2020
41
251
264
Goal 4: Quality education
Vincenzo Vespri; Simone Ciani
File in questo prodotto:
File Dimensione Formato  
251-264.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 335.12 kB
Formato Adobe PDF
335.12 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1217042
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact