We shall establish the interior Holder continuity for locally bounded weak solutions to a class of parabolic singular equations whose prototypes are u_t = ∇ · (|∇u|^(p−2)∇u), for 1 < p < 2, and u_t − ∇ · (u^(m−1)|∇u|^(p−2)∇u) = 0, for m + p > 3 −p/N via a new and simplified proof using recent techniques on expansion of positivity and L1-Harnack estimates
A new short proof of regularity for local weak solutions for a certain class of singular parabolic equations / Vincenzo Vespri; Simone Ciani. - In: RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI. - ISSN 2532-3350. - ELETTRONICO. - 41:(2020), pp. 251-264.
A new short proof of regularity for local weak solutions for a certain class of singular parabolic equations
Vincenzo Vespri
;Simone Ciani
2020
Abstract
We shall establish the interior Holder continuity for locally bounded weak solutions to a class of parabolic singular equations whose prototypes are u_t = ∇ · (|∇u|^(p−2)∇u), for 1 < p < 2, and u_t − ∇ · (u^(m−1)|∇u|^(p−2)∇u) = 0, for m + p > 3 −p/N via a new and simplified proof using recent techniques on expansion of positivity and L1-Harnack estimatesFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
251-264.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Creative commons
Dimensione
335.12 kB
Formato
Adobe PDF
|
335.12 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.