We shall establish the interior Holder continuity for locally bounded weak solutions to a class of parabolic singular equations whose prototypes are u_t = ∇ · (|∇u|^(p−2)∇u), for 1 < p < 2, and u_t − ∇ · (u^(m−1)|∇u|^(p−2)∇u) = 0, for m + p > 3 −p/N via a new and simplified proof using recent techniques on expansion of positivity and L1-Harnack estimates
Titolo: | A new short proof of regularity for local weak solutions for a certain class of singular parabolic equations |
Autori di Ateneo: | Simone Ciani (Corresponding) |
Autori: | Vincenzo Vespri; Simone Ciani |
Anno di registrazione: | 2020 |
Rivista: | |
Volume: | 41 |
Pagina iniziale: | 251 |
Pagina finale: | 264 |
Abstract: | We shall establish the interior Holder continuity for locally bounded weak solutions to a class of parabolic singular equations whose prototypes are u_t = ∇ · (|∇u|^(p−2)∇u), for 1 < p < 2, and u_t − ∇ · (u^(m−1)|∇u|^(p−2)∇u) = 0, for m + p > 3 −p/N via a new and simplified proof using recent techniques on expansion of positivity and L1-Harnack estimates |
Handle: | http://hdl.handle.net/2158/1217042 |
Codice ONU Sustainable Development Goals (SDG): | Goal 4: Quality education |
Appare nelle tipologie: | 1a - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
251-264.pdf | articolo principale | PDF editoriale | ![]() | Accesso pubblicoVisualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.