A boundary value problem on an unbounded domain, associated to difference equations with the Euclidean mean curvature operator is considered. The existence of solutions which are positive on the whole domain and decaying at infinity is examined by proving new Sturm comparison theorems for linear difference equations and using a fixed point approach based on a linearization device. The process from the continuous problem to discrete one is examined, too.

Decaying positive global solutions of second order difference equations with mean curvature operator / Zuzana Došlá; Serena Matucci; Pavel Řehák. - In: ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS. - ISSN 1417-3875. - ELETTRONICO. - 72:(2020), pp. 0-0. [10.14232/ejqtde.2020.1.72]

Decaying positive global solutions of second order difference equations with mean curvature operator

Serena Matucci;
2020

Abstract

A boundary value problem on an unbounded domain, associated to difference equations with the Euclidean mean curvature operator is considered. The existence of solutions which are positive on the whole domain and decaying at infinity is examined by proving new Sturm comparison theorems for linear difference equations and using a fixed point approach based on a linearization device. The process from the continuous problem to discrete one is examined, too.
2020
72
0
0
Zuzana Došlá; Serena Matucci; Pavel Řehák
File in questo prodotto:
File Dimensione Formato  
arxiv-2011.12048.pdf

accesso aperto

Descrizione: versione finale dell'autore depositata su ArXiv
Tipologia: Altro
Licenza: Open Access
Dimensione 217.65 kB
Formato Adobe PDF
217.65 kB Adobe PDF
p8939.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 450.21 kB
Formato Adobe PDF
450.21 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1218072
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact