The long-term use of anxiolytic and antidepressant drugs can cause a plethora of side effects and the use of complementary and alternative medicine, which is generally considered safer than conventional medicine, is consistently increasing. Helichrysum stoechas (L.) Moench methanolic extract (HSE) has shown MAO-A inhibitory properties in previous studies. With the aim of obtaining innovative and safer therapies for mood disorders, this study investigated the potential activity of HSE in the management of anxiety- and depression-related symptoms. HSE showed dose-dependent (30–100 mg/kg p.o.) anxiolytic-like activity in the light dark box and marble burying tests, without any antidepressant-like activity, as shown by the results of the tail suspension test. Additionally,HSE did not have any effect on the modulation of pain, which highlights its selectivity in the control of anxiety-related behavior. At active doses, HSE did not produce any sedative eect or result in impaired motor coordination and memory functions. Western blotting experiments showed the ability of HSE to counteract the reduction in the phosphorylation of ERK44/42, to restore brain-derived neurotrophic factor (BDNF) expression and to return cyclic AMP response element binding (CREB) levels to basal levels in noradrenergic hippocampal neurons of mice exposed to an anxiety-related environment, which indicates a protective role against anxiety behavior. These results suggest that oral administration of HSE might represent an interesting opportunity for the management of anxiety disorders.

Attenuation of Anxiety-Like Behavior by Helichrysum stoechas (L.) Moench Methanolic Extract through Up-Regulation of ERK Signaling Pathways in Noradrenergic Neurons / Borgonetti, Vittoria; Les, Francisco; López, Víctor; Galeotti, Nicoletta. - In: PHARMACEUTICALS. - ISSN 1424-8247. - ELETTRONICO. - 13:(2020), pp. 472-486. [10.3390/ph13120472]

Attenuation of Anxiety-Like Behavior by Helichrysum stoechas (L.) Moench Methanolic Extract through Up-Regulation of ERK Signaling Pathways in Noradrenergic Neurons

Borgonetti, Vittoria;Galeotti, Nicoletta
2020

Abstract

The long-term use of anxiolytic and antidepressant drugs can cause a plethora of side effects and the use of complementary and alternative medicine, which is generally considered safer than conventional medicine, is consistently increasing. Helichrysum stoechas (L.) Moench methanolic extract (HSE) has shown MAO-A inhibitory properties in previous studies. With the aim of obtaining innovative and safer therapies for mood disorders, this study investigated the potential activity of HSE in the management of anxiety- and depression-related symptoms. HSE showed dose-dependent (30–100 mg/kg p.o.) anxiolytic-like activity in the light dark box and marble burying tests, without any antidepressant-like activity, as shown by the results of the tail suspension test. Additionally,HSE did not have any effect on the modulation of pain, which highlights its selectivity in the control of anxiety-related behavior. At active doses, HSE did not produce any sedative eect or result in impaired motor coordination and memory functions. Western blotting experiments showed the ability of HSE to counteract the reduction in the phosphorylation of ERK44/42, to restore brain-derived neurotrophic factor (BDNF) expression and to return cyclic AMP response element binding (CREB) levels to basal levels in noradrenergic hippocampal neurons of mice exposed to an anxiety-related environment, which indicates a protective role against anxiety behavior. These results suggest that oral administration of HSE might represent an interesting opportunity for the management of anxiety disorders.
2020
13
472
486
Borgonetti, Vittoria; Les, Francisco; López, Víctor; Galeotti, Nicoletta
File in questo prodotto:
File Dimensione Formato  
185.pharmaceuticals-13-00472.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 2.61 MB
Formato Adobe PDF
2.61 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1219023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact