Near infrared (NIR)-resonant gold nanoparticles (AuNPs) hold great promise in cancer diagnostics and treatment. However, translating the theranostic potential of AuNPs into clinical applications still remains a challenge due to the difficulty to improve the efficiency and specificity of tumor delivery in vivo as well as the clearance from liver and spleen to avoid off target toxicity. In this study, endothelial colony forming cells (ECFCs) are exploited as vehicles to deliver AuNPs to tumors. It is first demonstrated that ECFCs display a great capability to intake AuNPs without losing viability, and exert antitumor activity per se. Using a human melanoma xenograft mouse model, it is next demonstrated that AuNP-loaded ECFCs retain their capacity to migrate to tumor sites in vivo 1 day after injection and stay in the tumor mass for more than 1 week. In addition, it is demonstrated that ECFC-loaded AuNPs are efficiently cleared by the liver over time and do not elicit any sign of damage to healthy tissue.

Enhanced Antitumoral Activity and Photoacoustic Imaging Properties of AuNP-Enriched Endothelial Colony Forming Cells on Melanoma / Armanetti P.; Chilla A.; Margheri F.; Biagioni A.; Menichetti L.; Margheri G.; Ratto F.; Centi S.; Bianchini F.; Severi M.; Traversi R.; Bani D.; Lulli M.; Del Rosso T.; Mocali A.; Rovida E.; Del Rosso M.; Fibbi G.; Laurenzana A.. - In: ADVANCED SCIENCE. - ISSN 2198-3844. - ELETTRONICO. - (2020), pp. 2001175-2001190. [10.1002/advs.202001175]

Enhanced Antitumoral Activity and Photoacoustic Imaging Properties of AuNP-Enriched Endothelial Colony Forming Cells on Melanoma

Chilla A.;Margheri F.;Biagioni A.;Bianchini F.;Severi M.;Traversi R.;Bani D.;Lulli M.;Mocali A.;Rovida E.;Del Rosso M.;Fibbi G.;Laurenzana A.
2020

Abstract

Near infrared (NIR)-resonant gold nanoparticles (AuNPs) hold great promise in cancer diagnostics and treatment. However, translating the theranostic potential of AuNPs into clinical applications still remains a challenge due to the difficulty to improve the efficiency and specificity of tumor delivery in vivo as well as the clearance from liver and spleen to avoid off target toxicity. In this study, endothelial colony forming cells (ECFCs) are exploited as vehicles to deliver AuNPs to tumors. It is first demonstrated that ECFCs display a great capability to intake AuNPs without losing viability, and exert antitumor activity per se. Using a human melanoma xenograft mouse model, it is next demonstrated that AuNP-loaded ECFCs retain their capacity to migrate to tumor sites in vivo 1 day after injection and stay in the tumor mass for more than 1 week. In addition, it is demonstrated that ECFC-loaded AuNPs are efficiently cleared by the liver over time and do not elicit any sign of damage to healthy tissue.
2020
2001175
2001190
Armanetti P.; Chilla A.; Margheri F.; Biagioni A.; Menichetti L.; Margheri G.; Ratto F.; Centi S.; Bianchini F.; Severi M.; Traversi R.; Bani D.; Lulli M.; Del Rosso T.; Mocali A.; Rovida E.; Del Rosso M.; Fibbi G.; Laurenzana A.
File in questo prodotto:
File Dimensione Formato  
advs.202001175 (1).pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 9.35 MB
Formato Adobe PDF
9.35 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1220003
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact