In this paper, we study the ratio between the number of p-elements and the order of a Sylow p-subgroup of a finite group G. As well known, this ratio is a positive integer and we conjecture that, for every group G, it is at least the (1−1)-th power of the number of Sylow p-subgroups of G. We prove this conjecture if G is p-solvable. Moreover, we prove that the conjecture is true in its generality if a somewhat similar condition holds for every almost simple group.

On the number of p-elements in a finite group / Gheri, Pietro. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - ELETTRONICO. - (2020), pp. 0-0. [10.1007/s10231-020-01035-9]

On the number of p-elements in a finite group

Gheri, Pietro
2020

Abstract

In this paper, we study the ratio between the number of p-elements and the order of a Sylow p-subgroup of a finite group G. As well known, this ratio is a positive integer and we conjecture that, for every group G, it is at least the (1−1)-th power of the number of Sylow p-subgroups of G. We prove this conjecture if G is p-solvable. Moreover, we prove that the conjecture is true in its generality if a somewhat similar condition holds for every almost simple group.
2020
0
0
Gheri, Pietro
File in questo prodotto:
File Dimensione Formato  
Gheri2020_Article_OnTheNumberOfP-elementsInAFini.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1222015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact