Renewable energy systems (RES) are currently being deployed on a large scale to meet the ambitious sustainable development goals for the next decades. A higher penetration of sustainable means of power production passes through the diffusion of RES-based distributed energy systems. The hybridization of such systems and their integration with Energy Storage Systems (ESS) can help improve reliability and level the mismatch between power production and consumption. In this paper, a novel modular tool for the simulation of distributed energy systems is presented by means of its application to a case study. The considered system is composed by PV modules, ESS and heat pumps. The optimal sizing of the components for self-consumption has been obtained through an electricity production cost minimization. A comparison between two different configurations has been conducted: in the first case, the thermal load is completely satisfied by a natural gas-fired boiler, while in the latter case, part of the thermal load is satisfied by a heat pump. The results have highlighted the impact of ESS on the economics of distributed energy systems and how the investment in such systems, in conditions similar to the case study, can be more easily sustained if a share of the total energy consumption of the unit is shifted from the thermal to the electrical part.

Optimal sizing of a distributed energy system with thermal load electrification / Lubello P.; Vaccaro G.; Carcasci C.. - In: E3S WEB OF CONFERENCES. - ISSN 2267-1242. - ELETTRONICO. - 197:(2020), pp. 01006-01013. (Intervento presentato al convegno 75th National ATI Congress - #7 Clean Energy for all, ATI 2020 tenutosi a ita nel 2020) [10.1051/e3sconf/202019701006].

Optimal sizing of a distributed energy system with thermal load electrification

Lubello P.
;
Carcasci C.
2020

Abstract

Renewable energy systems (RES) are currently being deployed on a large scale to meet the ambitious sustainable development goals for the next decades. A higher penetration of sustainable means of power production passes through the diffusion of RES-based distributed energy systems. The hybridization of such systems and their integration with Energy Storage Systems (ESS) can help improve reliability and level the mismatch between power production and consumption. In this paper, a novel modular tool for the simulation of distributed energy systems is presented by means of its application to a case study. The considered system is composed by PV modules, ESS and heat pumps. The optimal sizing of the components for self-consumption has been obtained through an electricity production cost minimization. A comparison between two different configurations has been conducted: in the first case, the thermal load is completely satisfied by a natural gas-fired boiler, while in the latter case, part of the thermal load is satisfied by a heat pump. The results have highlighted the impact of ESS on the economics of distributed energy systems and how the investment in such systems, in conditions similar to the case study, can be more easily sustained if a share of the total energy consumption of the unit is shifted from the thermal to the electrical part.
2020
E3S Web of Conferences
75th National ATI Congress - #7 Clean Energy for all, ATI 2020
ita
2020
Lubello P.; Vaccaro G.; Carcasci C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1222712
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact