We study real-valued valuations on the space of Lipschitz functions over the Euclidean unit sphere. After introducing an appropriate notion of convergence, we show that continuous valuations are bounded on sets which are bounded with respect to the Lipschitz norm. This fact, in combination with measure theoretical arguments, will yield an integral representation for continuous and rotation invariant valuations on the space of Lipschitz functions over the 1- dimensional sphere.
Continuous valuations on the space of Lipschitz functions on the sphere / Andrea Colesanti, Daniele Pagnini, Pedro Tradacete, Ignacio Villanueva. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - ELETTRONICO. - 280:(2021), pp. 1-43. [10.1016/j.jfa.2020.108873]
Continuous valuations on the space of Lipschitz functions on the sphere
Andrea Colesanti;Daniele Pagnini;
2021
Abstract
We study real-valued valuations on the space of Lipschitz functions over the Euclidean unit sphere. After introducing an appropriate notion of convergence, we show that continuous valuations are bounded on sets which are bounded with respect to the Lipschitz norm. This fact, in combination with measure theoretical arguments, will yield an integral representation for continuous and rotation invariant valuations on the space of Lipschitz functions over the 1- dimensional sphere.File | Dimensione | Formato | |
---|---|---|---|
2005.05419.pdf
Accesso chiuso
Descrizione: Preprint
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
331.8 kB
Formato
Adobe PDF
|
331.8 kB | Adobe PDF | Richiedi una copia |
1-s2.0-S002212362030416X-main.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
575.38 kB
Formato
Adobe PDF
|
575.38 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.