Pharmacogenomics, the science of how genetic makeup influences an individual's reaction to drugs, is an innovative tool for providing critical insights into how a patient will respond to a particular treatment. In the present work, we constructed cancer-like tissues to be used as tools for determining the most effective drug for an individual patient. Using tissue engineering strategies, we generated two different solid tumor-like tissues in vitro, a neuronal tumor (meningioma) and a nonmelanoma skin cancer. Samples were tested by both histological and genetic approaches (using a comparative genomic hybridization array, and the relative World Health Organization classification of the samples was compared with the results obtained by the molecular analyses. Our data confirmed the ability of the cells to maintain their phenotype in three-dimensional scaffolds as well as the strong relationship between chromosomal alterations and histological malignancy grades. We then validated the in vitro construction of tumor-like tissues as a potential tool for developing personalized drug treatments.
Tissue Engineering Strategies as Tools for Personalized Meningioma Treatment / Ferroni L, Della Puppa A, D'Avella D, Isola M, Scienza R, Gardin C, Zavan B.. - In: ARTIFICIAL ORGANS. - ISSN 0160-564X. - ELETTRONICO. - (2015), pp. 114-126.
Tissue Engineering Strategies as Tools for Personalized Meningioma Treatment
Della Puppa A;
2015
Abstract
Pharmacogenomics, the science of how genetic makeup influences an individual's reaction to drugs, is an innovative tool for providing critical insights into how a patient will respond to a particular treatment. In the present work, we constructed cancer-like tissues to be used as tools for determining the most effective drug for an individual patient. Using tissue engineering strategies, we generated two different solid tumor-like tissues in vitro, a neuronal tumor (meningioma) and a nonmelanoma skin cancer. Samples were tested by both histological and genetic approaches (using a comparative genomic hybridization array, and the relative World Health Organization classification of the samples was compared with the results obtained by the molecular analyses. Our data confirmed the ability of the cells to maintain their phenotype in three-dimensional scaffolds as well as the strong relationship between chromosomal alterations and histological malignancy grades. We then validated the in vitro construction of tumor-like tissues as a potential tool for developing personalized drug treatments.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.