We initiate the study of the enumerative combinatorics of the intervals in the Dyck pattern poset. More specifically, we find some closed formulas to express the size of some specific intervals, as well as the number of their covering relations. In most of the cases, we are also able to refine our formulas by rank. We also provide the first results on the Möbius function of the Dyck pattern poset, giving for instance a closed expression for the Möbius function of initial intervals whose maximum is a Dyck path having exactly two peaks.

Enumerative Combinatorics of Intervals in the Dyck Pattern Poset / Bernini A.; Cervetti M.; Ferrari L.; Steingrimsson E.. - In: ORDER. - ISSN 0167-8094. - STAMPA. - 38:(2021), pp. 473-487. [10.1007/s11083-021-09552-9]

Enumerative Combinatorics of Intervals in the Dyck Pattern Poset

Bernini A.;Cervetti M.;Ferrari L.;Steingrimsson E.
2021

Abstract

We initiate the study of the enumerative combinatorics of the intervals in the Dyck pattern poset. More specifically, we find some closed formulas to express the size of some specific intervals, as well as the number of their covering relations. In most of the cases, we are also able to refine our formulas by rank. We also provide the first results on the Möbius function of the Dyck pattern poset, giving for instance a closed expression for the Möbius function of initial intervals whose maximum is a Dyck path having exactly two peaks.
2021
38
473
487
Bernini A.; Cervetti M.; Ferrari L.; Steingrimsson E.
File in questo prodotto:
File Dimensione Formato  
Bernini2021_Article_EnumerativeCombinatoricsOfInte.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 446.13 kB
Formato Adobe PDF
446.13 kB Adobe PDF
s11083-021-09552-9.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 455.79 kB
Formato Adobe PDF
455.79 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1234919
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact