In this paper, we derive a local Carleman estimate for the complex second order elliptic operator with Lipschitz coefficients having jump discontinuities. Combing the result in [M. Bellassoued, J. Le Rousseau 2018] and the arguments in [M. Di Cristo, E. Francini, C.-L. Lin, S. Vessella, and J.-N. Wang, 2017], we present an elementary method to derive the Carleman estimate under the optimal regularity assumption on the coefficients.

Carleman estimate for complex second order elliptic operators with discontinuous Lipschitz coefficients / Elisa Francini; Sergio Vessella; JennNan Wang. - In: JOURNAL OF SPECTRAL THEORY. - ISSN 1664-039X. - STAMPA. - 12:(2022), pp. 535-571. [10.4171/JST/410]

Carleman estimate for complex second order elliptic operators with discontinuous Lipschitz coefficients

Elisa Francini;Sergio Vessella;
2022

Abstract

In this paper, we derive a local Carleman estimate for the complex second order elliptic operator with Lipschitz coefficients having jump discontinuities. Combing the result in [M. Bellassoued, J. Le Rousseau 2018] and the arguments in [M. Di Cristo, E. Francini, C.-L. Lin, S. Vessella, and J.-N. Wang, 2017], we present an elementary method to derive the Carleman estimate under the optimal regularity assumption on the coefficients.
2022
12
535
571
Elisa Francini; Sergio Vessella; JennNan Wang
File in questo prodotto:
File Dimensione Formato  
FranciniVessellaWangfinalereferata21.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 362.51 kB
Formato Adobe PDF
362.51 kB Adobe PDF   Richiedi una copia
francinivessellawang22.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 319.08 kB
Formato Adobe PDF
319.08 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1235391
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact