In this paper, we derive a local Carleman estimate for the complex second order elliptic operator with Lipschitz coefficients having jump discontinuities. Combing the result in [M. Bellassoued, J. Le Rousseau 2018] and the arguments in [M. Di Cristo, E. Francini, C.-L. Lin, S. Vessella, and J.-N. Wang, 2017], we present an elementary method to derive the Carleman estimate under the optimal regularity assumption on the coefficients.
Carleman estimate for complex second order elliptic operators with discontinuous Lipschitz coefficients / Elisa Francini; Sergio Vessella; JennNan Wang. - In: JOURNAL OF SPECTRAL THEORY. - ISSN 1664-039X. - STAMPA. - 12:(2022), pp. 535-571. [10.4171/JST/410]
Carleman estimate for complex second order elliptic operators with discontinuous Lipschitz coefficients
Elisa Francini;Sergio Vessella;
2022
Abstract
In this paper, we derive a local Carleman estimate for the complex second order elliptic operator with Lipschitz coefficients having jump discontinuities. Combing the result in [M. Bellassoued, J. Le Rousseau 2018] and the arguments in [M. Di Cristo, E. Francini, C.-L. Lin, S. Vessella, and J.-N. Wang, 2017], we present an elementary method to derive the Carleman estimate under the optimal regularity assumption on the coefficients.File | Dimensione | Formato | |
---|---|---|---|
FranciniVessellaWangfinalereferata21.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
362.51 kB
Formato
Adobe PDF
|
362.51 kB | Adobe PDF | Richiedi una copia |
francinivessellawang22.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
319.08 kB
Formato
Adobe PDF
|
319.08 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.