Using a distributed representation formula of the Gateaux derivative of the Dirichlet-to-Neumann map with respect to movements of a polygonal conductivity inclusion, we prove global Lipschitz stability for the determination of a polygonal conductivity inclusion, embedded in a 2-dimensional layered medium, from knowledge of the Dirichlet-to-Neumann map.
Lipschitz Stable Determination of Polygonal Conductivity Inclusions in a Two-Dimensional Layered Medium from the Dirichlet-to-Neumann Map / Elena Beretta; Elisa Francini; Sergio Vessella. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 1095-7154. - STAMPA. - 53:(2021), pp. 4303-4327. [10.1137/20M1369609]
Lipschitz Stable Determination of Polygonal Conductivity Inclusions in a Two-Dimensional Layered Medium from the Dirichlet-to-Neumann Map
Elisa Francini;Sergio Vessella
2021
Abstract
Using a distributed representation formula of the Gateaux derivative of the Dirichlet-to-Neumann map with respect to movements of a polygonal conductivity inclusion, we prove global Lipschitz stability for the determination of a polygonal conductivity inclusion, embedded in a 2-dimensional layered medium, from knowledge of the Dirichlet-to-Neumann map.File | Dimensione | Formato | |
---|---|---|---|
BerettaFranciniVessellafinalereferata21.pdf
Accesso chiuso
Descrizione: Versione finale referata
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
782.67 kB
Formato
Adobe PDF
|
782.67 kB | Adobe PDF | Richiedi una copia |
BerettaFranciniVessella2021.pdf
Accesso chiuso
Descrizione: Versione editoriale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
715.84 kB
Formato
Adobe PDF
|
715.84 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.