Continuous monitoring of mechanical impacts is one of the goals of modern SHM systems using a sensor network installed on a structure. For the evaluation of the impact position, there are generally applied triangulation techniques based on the estimation of the differential time of arrival (DToA). The signals generated by impacts are multimodal, dispersive Lamb waves propagating in the plate-like structure. Symmetrical S0 and antisymmetrical A0 Lamb waves are both generated by impact events with different velocities and energies. The discrimination of these two modes is an advantage for impact positioning and characterization. The faster S0 is less influenced by multiple path signal overlapping and is also less dispersive, but its amplitude is generally 40–80 dB lower than the amplitude of the A0 mode. The latter has an amplitude related to the impact energy, while S0 amplitude is related to the impact velocity and has higher frequency spectral content. For these reasons, the analog front-end (AFE) design is crucial to preserve the information of the impact event, and at the same time, the overall signal chain must be optimized. Large dynamic range ADCs with high resolution (at least 12-bit) are generally required for processing these signals to retrieve the DToA information found in the full signal spectrum, typically from 20 kHz to 500 kHz. A solution explored in this work is the design of a versatile analog front-end capable of matching the different types of piezoelectric sensors used for impact monitoring (piezoceramic, piezocomposite or piezopolymer) in a sensor node. The analog front-end interface has a programmable attenuator and three selectable configurations with different gain and bandwidth to optimize the signal-to-noise ratio and distortion of the selected Lamb wave mode. This interface is realized as a module compatible with the I/O of a 16 channels real-time electronic system for SHM previously developed by the authors. Highfrequency components up to 270 kHz and lower-frequency components of the received signals are separated by different channels and generate high signal-to-noise ratio signals that can be easily treated by digital signal processing using a single central unit board with ADC and FPGA.
A Versatile Analog Electronic Interface for Piezoelectric Sensors Used for Impacts Detection and Positioning in Structural Health Monitoring (SHM) Systems / Capineri, Lorenzo; Bulletti, Andrea. - In: ELECTRONICS. - ISSN 2079-9292. - ELETTRONICO. - 10:(2021), pp. 1047-1065. [10.3390/electronics10091047]
A Versatile Analog Electronic Interface for Piezoelectric Sensors Used for Impacts Detection and Positioning in Structural Health Monitoring (SHM) Systems
Capineri, Lorenzo
Conceptualization
;Bulletti, AndreaInvestigation
2021
Abstract
Continuous monitoring of mechanical impacts is one of the goals of modern SHM systems using a sensor network installed on a structure. For the evaluation of the impact position, there are generally applied triangulation techniques based on the estimation of the differential time of arrival (DToA). The signals generated by impacts are multimodal, dispersive Lamb waves propagating in the plate-like structure. Symmetrical S0 and antisymmetrical A0 Lamb waves are both generated by impact events with different velocities and energies. The discrimination of these two modes is an advantage for impact positioning and characterization. The faster S0 is less influenced by multiple path signal overlapping and is also less dispersive, but its amplitude is generally 40–80 dB lower than the amplitude of the A0 mode. The latter has an amplitude related to the impact energy, while S0 amplitude is related to the impact velocity and has higher frequency spectral content. For these reasons, the analog front-end (AFE) design is crucial to preserve the information of the impact event, and at the same time, the overall signal chain must be optimized. Large dynamic range ADCs with high resolution (at least 12-bit) are generally required for processing these signals to retrieve the DToA information found in the full signal spectrum, typically from 20 kHz to 500 kHz. A solution explored in this work is the design of a versatile analog front-end capable of matching the different types of piezoelectric sensors used for impact monitoring (piezoceramic, piezocomposite or piezopolymer) in a sensor node. The analog front-end interface has a programmable attenuator and three selectable configurations with different gain and bandwidth to optimize the signal-to-noise ratio and distortion of the selected Lamb wave mode. This interface is realized as a module compatible with the I/O of a 16 channels real-time electronic system for SHM previously developed by the authors. Highfrequency components up to 270 kHz and lower-frequency components of the received signals are separated by different channels and generate high signal-to-noise ratio signals that can be easily treated by digital signal processing using a single central unit board with ADC and FPGA.File | Dimensione | Formato | |
---|---|---|---|
electronics-10-01047.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
6.75 MB
Formato
Adobe PDF
|
6.75 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.