In this paper, we address the problem of image retrieval by learning images representation based on the activations of a Convolutional Neural Network. We present an end-to-end trainable network architecture that exploits a novel multi-scale local pooling based on NetVLAD and a triplet mining procedure based on samples difficulty to obtain an effective image representation. Extensive experiments show that our approach is able to reach state-of-the-art results on three standard datasets.

Image retrieval using multi-scale CNN features pooling / Vaccaro F.; Bertini M.; Uricchio T.; Del Bimbo A.. - ELETTRONICO. - (2020), pp. 311-315. (Intervento presentato al convegno 10th ACM International Conference on Multimedia Retrieval, ICMR 2020 tenutosi a irl nel 2020) [10.1145/3372278.3390732].

Image retrieval using multi-scale CNN features pooling

Vaccaro F.;Bertini M.;Uricchio T.;Del Bimbo A.
2020

Abstract

In this paper, we address the problem of image retrieval by learning images representation based on the activations of a Convolutional Neural Network. We present an end-to-end trainable network architecture that exploits a novel multi-scale local pooling based on NetVLAD and a triplet mining procedure based on samples difficulty to obtain an effective image representation. Extensive experiments show that our approach is able to reach state-of-the-art results on three standard datasets.
2020
ICMR 2020 - Proceedings of the 2020 International Conference on Multimedia Retrieval
10th ACM International Conference on Multimedia Retrieval, ICMR 2020
irl
2020
Vaccaro F.; Bertini M.; Uricchio T.; Del Bimbo A.
File in questo prodotto:
File Dimensione Formato  
2004.09695.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 7.15 MB
Formato Adobe PDF
7.15 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1237252
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact