To understand human behavior we must not just recognize individual actions but model possibly complex group activity and interactions. Hierarchical models obtain the best results in group activity recognition but require fine grained individual action annotations at the actor level. In this paper we show that using only skeletal data we can train a state-of-the art end-to-end system using only group activity labels at the sequence level. Our experiments show that models trained without individual action supervision perform poorly. On the other hand we show that pseudo-labels can be computed from any pre-trained feature extractor with comparable final performance. Finally our carefully designed lean pose only architecture shows highly competitive results versus more complex multimodal approaches even in the self-supervised variant.

Learning Group Activities from Skeletons without Individual Action Labels / Zappardino, Fabio; Uricchio, Tiberio; Seidenari, Lorenzo; del Bimbo, Alberto. - ELETTRONICO. - (2021), pp. 10412-10417. ( 2020 25th International Conference on Pattern Recognition (ICPR)) [10.1109/ICPR48806.2021.9413195].

Learning Group Activities from Skeletons without Individual Action Labels

Uricchio, Tiberio;Seidenari, Lorenzo;del Bimbo, Alberto
2021

Abstract

To understand human behavior we must not just recognize individual actions but model possibly complex group activity and interactions. Hierarchical models obtain the best results in group activity recognition but require fine grained individual action annotations at the actor level. In this paper we show that using only skeletal data we can train a state-of-the art end-to-end system using only group activity labels at the sequence level. Our experiments show that models trained without individual action supervision perform poorly. On the other hand we show that pseudo-labels can be computed from any pre-trained feature extractor with comparable final performance. Finally our carefully designed lean pose only architecture shows highly competitive results versus more complex multimodal approaches even in the self-supervised variant.
2021
25th International Conference on Pattern Recognition (ICPR)
2020 25th International Conference on Pattern Recognition (ICPR)
Zappardino, Fabio; Uricchio, Tiberio; Seidenari, Lorenzo; del Bimbo, Alberto
File in questo prodotto:
File Dimensione Formato  
icpr-2020-1.pdf

Accesso chiuso

Descrizione: articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 916.11 kB
Formato Adobe PDF
916.11 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1237257
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 15
social impact