Optimizing Home Care Services is receiving a great attention in Operations Research. We address arrival time consistency, person-oriented consistency and demand uncertainty in Home Care, while jointly optimizing assignment, scheduling and routing decisions over a multiple-day time horizon. Consistent time schedules are very much appreciated by patients who, in this setting, are very sensitive to changes in their daily routines. Also person-oriented consistency positively impacts on service quality, guaranteeing that almost the same set of caregivers take care of a patient in the planning horizon. Demand uncertainty plays a pivotal role, too, since both the set of patients under treatment and their care plan can change over time. To the best of our knowledge, this is the first paper dealing with all these aspects in Home Care via a robust approach. We present a mathematical model to the problem, and a pattern-based algorithmic framework to solve it. The framework is derived from the model via decomposition, i.e. suitably fixing the scheduling decisions through the concept of pattern. We propose alternative policies to generate patterns, taking into account consistency and demand uncertainty; when embedding them in the general framework, alternative pattern based algorithms originate. The results of a rich computational experience show that introducing consistency and demand uncertainty in pattern generation policies is crucial to efficiently compute very good quality solutions, in terms of robustness and balancing of the caregiver workload. In addition, a comparison with a simpler model, where no kind of consistency is imposed, shows the importance of considering consistency in pursuing a valuable patient-centered perspective, with a positive effect also on the efficiency of the solution approach.
Addressing consistency and demand uncertainty in the Home Care planning problem / Cappanera P.; Scutella M.G.. - In: FLEXIBLE SERVICES AND MANUFACTURING JOURNAL. - ISSN 1936-6582. - STAMPA. - 34:(2022), pp. 1-39. [10.1007/s10696-021-09412-z]
Addressing consistency and demand uncertainty in the Home Care planning problem
Cappanera P.
;
2022
Abstract
Optimizing Home Care Services is receiving a great attention in Operations Research. We address arrival time consistency, person-oriented consistency and demand uncertainty in Home Care, while jointly optimizing assignment, scheduling and routing decisions over a multiple-day time horizon. Consistent time schedules are very much appreciated by patients who, in this setting, are very sensitive to changes in their daily routines. Also person-oriented consistency positively impacts on service quality, guaranteeing that almost the same set of caregivers take care of a patient in the planning horizon. Demand uncertainty plays a pivotal role, too, since both the set of patients under treatment and their care plan can change over time. To the best of our knowledge, this is the first paper dealing with all these aspects in Home Care via a robust approach. We present a mathematical model to the problem, and a pattern-based algorithmic framework to solve it. The framework is derived from the model via decomposition, i.e. suitably fixing the scheduling decisions through the concept of pattern. We propose alternative policies to generate patterns, taking into account consistency and demand uncertainty; when embedding them in the general framework, alternative pattern based algorithms originate. The results of a rich computational experience show that introducing consistency and demand uncertainty in pattern generation policies is crucial to efficiently compute very good quality solutions, in terms of robustness and balancing of the caregiver workload. In addition, a comparison with a simpler model, where no kind of consistency is imposed, shows the importance of considering consistency in pursuing a valuable patient-centered perspective, with a positive effect also on the efficiency of the solution approach.File | Dimensione | Formato | |
---|---|---|---|
FSMJ-2022-HC.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
2.06 MB
Formato
Adobe PDF
|
2.06 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.