Multi-Temporal Satellite Interferometry (MTInSAR) is gradually evolving from being a tool developed by the scientific community exclusively for research purposes to a real operational technique that can meet the needs of different users involved in geohazard mitigation. This work aims at showing the innovative operational use of satellite radar interferometric products in Civil Protection Authority (CPA) practices for monitoring slow-moving landslides. We present the example of the successful ongoing monitoring system in the Valle D’Aosta Region (VAR-Northern Italy). This system exploits well-combined MTInSAR products and ground-based instruments for landslide management and mitigation strategies over the whole regional territory. Due to the critical intrinsic constraints of MTInSAR data, a robust regional satellite monitoring integrated into CPA practices requires the support of both in situ measurements and remotely sensed systems to guarantee the completeness and reliability of information. The monitoring network comprises three levels of analysis: Knowledge monitoring, Control monitoring, and Emergency monitoring. At the first monitoring level, MTInSAR data are used for the preliminary evaluation of the deformation scenario at a regional scale. At the second monitoring level, MTInSAR products support the prompt detection of trend variations of radar benchmarks displacements with bi-weekly temporal frequency to identify active critical situations where follow-up studies must be carried out. In the third monitoring level, MTInSAR data integrated with ground-based data are exploited to confirm active slow-moving deformations detected by on-site instruments. At this level, MTInSAR data are also used to carry out back analysis that cannot be performed by any other tool. From the example of the Valle D’Aosta Region integrated monitoring network, which is one of the few examples of this kind around Europe, it is evident that MTInSAR provides a great opportunity to improve monitoring capabilities within CPA activities.

Integration of satellite interferometric data in civil protection strategies for landslide studies at a regional scale / Bianchini S.; Solari L.; Bertolo D.; Thuegaz P.; Catani F.. - In: REMOTE SENSING. - ISSN 2072-4292. - ELETTRONICO. - 13(10):(2021), pp. 1-16. [10.3390/rs13101881]

Integration of satellite interferometric data in civil protection strategies for landslide studies at a regional scale

Bianchini S.;
2021

Abstract

Multi-Temporal Satellite Interferometry (MTInSAR) is gradually evolving from being a tool developed by the scientific community exclusively for research purposes to a real operational technique that can meet the needs of different users involved in geohazard mitigation. This work aims at showing the innovative operational use of satellite radar interferometric products in Civil Protection Authority (CPA) practices for monitoring slow-moving landslides. We present the example of the successful ongoing monitoring system in the Valle D’Aosta Region (VAR-Northern Italy). This system exploits well-combined MTInSAR products and ground-based instruments for landslide management and mitigation strategies over the whole regional territory. Due to the critical intrinsic constraints of MTInSAR data, a robust regional satellite monitoring integrated into CPA practices requires the support of both in situ measurements and remotely sensed systems to guarantee the completeness and reliability of information. The monitoring network comprises three levels of analysis: Knowledge monitoring, Control monitoring, and Emergency monitoring. At the first monitoring level, MTInSAR data are used for the preliminary evaluation of the deformation scenario at a regional scale. At the second monitoring level, MTInSAR products support the prompt detection of trend variations of radar benchmarks displacements with bi-weekly temporal frequency to identify active critical situations where follow-up studies must be carried out. In the third monitoring level, MTInSAR data integrated with ground-based data are exploited to confirm active slow-moving deformations detected by on-site instruments. At this level, MTInSAR data are also used to carry out back analysis that cannot be performed by any other tool. From the example of the Valle D’Aosta Region integrated monitoring network, which is one of the few examples of this kind around Europe, it is evident that MTInSAR provides a great opportunity to improve monitoring capabilities within CPA activities.
2021
13(10)
1
16
Bianchini S.; Solari L.; Bertolo D.; Thuegaz P.; Catani F.
File in questo prodotto:
File Dimensione Formato  
Bianchini et al REMOTE SENSING 2021.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 8.72 MB
Formato Adobe PDF
8.72 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1237966
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact