This mini-review reports the effect of aerobic granular sludge (AGS) on performance and membrane-fouling in combined aerobic granular sludge–membrane bioreactor (AGS–MBR) systems. Membrane-fouling represents a major drawback hampering the wider application of membrane bioreactor (MBR) technology. Fouling can be mitigated by applying aerobic granular sludge technology, a novel kind of biofilm technology characterized by high settleability, strong microbial structure, high resilience to toxic/recalcitrant compounds of industrial wastewater, and the possibility to simultaneously remove organic matter and nutrients. Different schemes can be foreseen for the AGS–MBR process. However, an updated literature review reveals that in the AGS–MBR process, granule breakage represents a critical problem in all configurations, which often causes an increase of pore-blocking. Therefore, to date, the objective of research in this sector has been to develop a stable AGS–MBR through multiple operational strategies, including the cultivation of AGS directly in an AGS–MBR reactor, the occurrence of an anaerobic-feast/aerobic-famine regime in continuous-flow reactors, maintenance of average granule dimensions far from critical values, and proper management of AGS scouring, which has been recently recognized as a crucial factor in membrane-fouling mitigation.

Aerobic granular sludge–membrane bioreactor (Ags–mbr) as a novel configuration for wastewater treatment and fouling mitigation: A mini-review / Campo R.; Lubello C.; Lotti T.; Di Bella G.. - In: MEMBRANES. - ISSN 2077-0375. - ELETTRONICO. - 11:(2021), pp. 261-284. [10.3390/membranes11040261]

Aerobic granular sludge–membrane bioreactor (Ags–mbr) as a novel configuration for wastewater treatment and fouling mitigation: A mini-review

Campo R.;Lubello C.;Lotti T.;
2021

Abstract

This mini-review reports the effect of aerobic granular sludge (AGS) on performance and membrane-fouling in combined aerobic granular sludge–membrane bioreactor (AGS–MBR) systems. Membrane-fouling represents a major drawback hampering the wider application of membrane bioreactor (MBR) technology. Fouling can be mitigated by applying aerobic granular sludge technology, a novel kind of biofilm technology characterized by high settleability, strong microbial structure, high resilience to toxic/recalcitrant compounds of industrial wastewater, and the possibility to simultaneously remove organic matter and nutrients. Different schemes can be foreseen for the AGS–MBR process. However, an updated literature review reveals that in the AGS–MBR process, granule breakage represents a critical problem in all configurations, which often causes an increase of pore-blocking. Therefore, to date, the objective of research in this sector has been to develop a stable AGS–MBR through multiple operational strategies, including the cultivation of AGS directly in an AGS–MBR reactor, the occurrence of an anaerobic-feast/aerobic-famine regime in continuous-flow reactors, maintenance of average granule dimensions far from critical values, and proper management of AGS scouring, which has been recently recognized as a crucial factor in membrane-fouling mitigation.
2021
11
261
284
Campo R.; Lubello C.; Lotti T.; Di Bella G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1239624
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact