Context. The luminous efficiency, τ, can be used to compute the pre-atmospheric masses of meteoroids from corresponding recorded meteor brightnesses. The derivation of the luminous efficiency is non-trivial and is subject to biases and model assumptions. This has led to greatly varying results in the last decades of studies. Aims. The present paper aims to investigate how a reduction in various observational biases can be achieved to derive (more) reliable values for the luminous efficiency. Methods. A total of 281 meteors observed by the Fireball Recovery and InterPlanetary Observation Network (FRIPON) are studied. The luminous efficiencies of the events are computed using an ablation-based model. The relations of τ as a function of the pre-atmospheric meteoroid velocity, ve, and mass, Me, are studied. Various aspects that could render the method less valid, cause inaccuracies, or bias the results are investigated. On this basis, the best suitable meteors were selected for luminous efficiency computations. Results. The presented analysis shows the limits of the used method. The most influential characteristics that are necessary for reliable results for the τ computation were identified. We study the dependence of τ on the assumed meteoroid’s density, ρ, and include improved ρ-values for objects with identified meteoroid stream association. Based on the discovered individual biases and constraints we create a pre-debiased subset of 54 well-recorded events with a relative velocity change >80%, a final height <70 km, and a Knudsen number Kn < 0.01; this last value indicates that the events were observed in the continuum-flow regime. We find τ-values in the range between 0.012% and 1.1% for this pre-debiased subset and relations of τ to ve and Me of: τ=7.33⋅ve−1.10 and τ=0.28⋅Me−0.33. Conclusions. The derived luminous efficiency of meteoroids depends on the assumed material density. Our results indicate that the applied debiasing method improves the analysis of τ from decelerated meteoroids. The underlying method is only valid for meteors in the continuum-flow regime. These events tend to have low end heights, large masses, and high deceleration

Luminous efficiency of meteors derived from ablation model after assessment of its range of validity / Drolshagen, E.; Ott, T.; Koschny, D.; Drolshagen, G.; Vaubaillon, J.; Colas, F.; Zanda, B.; Bouley, S.; Jeanne, S.; Malgoyre, A.; Birlan, M.; Vernazza, P.; Gardiol, D.; Nedelcu, D. A.; Rowe, J.; Forcier, M.; Trigo-Rodriguez, J. M.; Peña-Asensio, E.; Lamy, H.; Ferrière, L.; Barghini, D.; Carbognani, A.; Di Martino, M.; Rasetti, S.; Valsecchi, G. B.; Volpicelli, C. A.; Di Carlo, M.; Knapic, C.; Pratesi, G.; Riva, W.; Stirpe, G. M.; Zorba, S.; Hernandez, O.; Grandchamps, A.; Jehin, E.; Jobin, M.; King, A.; Sanchez-Lavega, A.; Toni, A.; Rimola, A.; Poppe, B.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - STAMPA. - 652:(2021), pp. A84-A84. [10.1051/0004-6361/202140917]

Luminous efficiency of meteors derived from ablation model after assessment of its range of validity

Pratesi, G.;
2021

Abstract

Context. The luminous efficiency, τ, can be used to compute the pre-atmospheric masses of meteoroids from corresponding recorded meteor brightnesses. The derivation of the luminous efficiency is non-trivial and is subject to biases and model assumptions. This has led to greatly varying results in the last decades of studies. Aims. The present paper aims to investigate how a reduction in various observational biases can be achieved to derive (more) reliable values for the luminous efficiency. Methods. A total of 281 meteors observed by the Fireball Recovery and InterPlanetary Observation Network (FRIPON) are studied. The luminous efficiencies of the events are computed using an ablation-based model. The relations of τ as a function of the pre-atmospheric meteoroid velocity, ve, and mass, Me, are studied. Various aspects that could render the method less valid, cause inaccuracies, or bias the results are investigated. On this basis, the best suitable meteors were selected for luminous efficiency computations. Results. The presented analysis shows the limits of the used method. The most influential characteristics that are necessary for reliable results for the τ computation were identified. We study the dependence of τ on the assumed meteoroid’s density, ρ, and include improved ρ-values for objects with identified meteoroid stream association. Based on the discovered individual biases and constraints we create a pre-debiased subset of 54 well-recorded events with a relative velocity change >80%, a final height <70 km, and a Knudsen number Kn < 0.01; this last value indicates that the events were observed in the continuum-flow regime. We find τ-values in the range between 0.012% and 1.1% for this pre-debiased subset and relations of τ to ve and Me of: τ=7.33⋅ve−1.10 and τ=0.28⋅Me−0.33. Conclusions. The derived luminous efficiency of meteoroids depends on the assumed material density. Our results indicate that the applied debiasing method improves the analysis of τ from decelerated meteoroids. The underlying method is only valid for meteors in the continuum-flow regime. These events tend to have low end heights, large masses, and high deceleration
2021
652
A84
A84
Drolshagen, E.; Ott, T.; Koschny, D.; Drolshagen, G.; Vaubaillon, J.; Colas, F.; Zanda, B.; Bouley, S.; Jeanne, S.; Malgoyre, A.; Birlan, M.; Vernazza...espandi
File in questo prodotto:
File Dimensione Formato  
Drolshagen-et-al_2021_FRIPON_II_Luminous efficiency of meteors.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 36.21 MB
Formato Adobe PDF
36.21 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1241352
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact