We provide the complete classification of seven-dimensional manifolds endowed with a closed non-parallel G2-structure and admitting a transitive reductive group G of automorphisms. In particular, we show that the center of G is one-dimensional and the manifold is the Riemannian product of a flat factor and a non-compact homogeneous six-dimensional manifold endowed with an invariant strictly symplectic half-flat SU(3)-structure.

Closed G2-structures with a Transitive Reductive Group of Automorphisms / Fabio Podestà ; Alberto Raffero. - In: THE ASIAN JOURNAL OF MATHEMATICS. - ISSN 1093-6106. - STAMPA. - 25:(2021), pp. 897-910. [10.4310/AJM.2021.v25.n6.a6]

Closed G2-structures with a Transitive Reductive Group of Automorphisms

Fabio Podestà;
2021

Abstract

We provide the complete classification of seven-dimensional manifolds endowed with a closed non-parallel G2-structure and admitting a transitive reductive group G of automorphisms. In particular, we show that the center of G is one-dimensional and the manifold is the Riemannian product of a flat factor and a non-compact homogeneous six-dimensional manifold endowed with an invariant strictly symplectic half-flat SU(3)-structure.
2021
25
897
910
Fabio Podestà ; Alberto Raffero
File in questo prodotto:
File Dimensione Formato  
PodestaRafferorevised2.pdf

Accesso chiuso

Descrizione: Versione finale referata
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 363.71 kB
Formato Adobe PDF
363.71 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1241354
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact