This work studies the zeros of slice functions over the algebra of dual quaternions and it comprises applications to the problem of factorizing motion polynomials. The class of slice functions over a real alternative*- algebra A was defined by Ghiloni and Perotti [Adv. Math. 226 (2011), pp. 1662-1691], extending the class of slice regular functions introduced by Gentili and Struppa [C. R. Math. Acad. Sci. Paris 342 (2006), pp. 741-744]. Both classes strictly include the polynomials over A. We focus on the case when A is the algebra of dual quaternions DH. The specific properties of this algebra allow a full characterization of the zero sets, which is not available over general real alternative*-algebras. This characterization sheds some light on the study of motion polynomials over DH, introduced by Hegedüs, Schicho, and Schröcker [Mech. Mach. Theory 69 (2013), pp. 42-152] for their relevance in mechanism science.

Zeros of slice functions and polynomials over dual quaternions / GENTILI G.; STOPPATO C.; TRINCI T.. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - STAMPA. - 374:(2021), pp. 5509-5544. [10.1090/tran/8346]

Zeros of slice functions and polynomials over dual quaternions

GENTILI G.;STOPPATO C.;TRINCI T.
2021

Abstract

This work studies the zeros of slice functions over the algebra of dual quaternions and it comprises applications to the problem of factorizing motion polynomials. The class of slice functions over a real alternative*- algebra A was defined by Ghiloni and Perotti [Adv. Math. 226 (2011), pp. 1662-1691], extending the class of slice regular functions introduced by Gentili and Struppa [C. R. Math. Acad. Sci. Paris 342 (2006), pp. 741-744]. Both classes strictly include the polynomials over A. We focus on the case when A is the algebra of dual quaternions DH. The specific properties of this algebra allow a full characterization of the zero sets, which is not available over general real alternative*-algebras. This characterization sheds some light on the study of motion polynomials over DH, introduced by Hegedüs, Schicho, and Schröcker [Mech. Mach. Theory 69 (2013), pp. 42-152] for their relevance in mechanism science.
2021
374
5509
5544
GENTILI G.; STOPPATO C.; TRINCI T.
File in questo prodotto:
File Dimensione Formato  
AAM-TAMS-2021.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 581.23 kB
Formato Adobe PDF
581.23 kB Adobe PDF
22.TAMS.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 410.05 kB
Formato Adobe PDF
410.05 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1242255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact