This article reports the syntheses, characterization, structural description, together with magnetic and spectroscopic properties of two isostructural molecular magnets based on the chiral ligand N,N′-bis((1,2-diphenyl-(pyridine-2-yl)methylene)-(R,R/S,S)-ethane-1,2-diamine), L1, of general formula [Ln2(RR-L1)2(Cl6)]·MeOH·1.5H2O, (Ln = Ce (1) or Nd (2)). Multifrequency electron paramagnetic resonance (EPR), cantilever torque magnetometry (CTM) measurements, and ab initio calculations allowed us to determine single-ion magnetic anisotropy and intramolecular magnetic interactions in both compounds, evidencing a more important role of the anisotropic exchange for the NdIII derivative. The comparison of experimental and theoretical data indicates that, in the case of largely rhombic lanthanide ions, ab initio calculations can fail in determining the orientation of the weakest components, while being reliable in determining their principal values. However, they remain of paramount importance to set the analysis of EPR and CTM on sound basis, thus obtaining a very precise picture of the magnetic interactions in these systems. Finally, the electronic structure of the two complexes, as obtained by this approach, is consistent with the absence of zero-field slow relaxation observed in ac susceptibility.

Single-Ion Anisotropy and Intramolecular Interactions in CeIIIand NdIIIDimers / Mayans J.; Tesi L.; Briganti M.; Boulon M.-E.; Font-Bardia M.; Escuer A.; Sorace L.. - In: INORGANIC CHEMISTRY. - ISSN 0020-1669. - STAMPA. - 60:(2021), pp. 8692-8703. [10.1021/acs.inorgchem.1c00647]

Single-Ion Anisotropy and Intramolecular Interactions in CeIIIand NdIIIDimers

Tesi L.;Briganti M.;Sorace L.
2021

Abstract

This article reports the syntheses, characterization, structural description, together with magnetic and spectroscopic properties of two isostructural molecular magnets based on the chiral ligand N,N′-bis((1,2-diphenyl-(pyridine-2-yl)methylene)-(R,R/S,S)-ethane-1,2-diamine), L1, of general formula [Ln2(RR-L1)2(Cl6)]·MeOH·1.5H2O, (Ln = Ce (1) or Nd (2)). Multifrequency electron paramagnetic resonance (EPR), cantilever torque magnetometry (CTM) measurements, and ab initio calculations allowed us to determine single-ion magnetic anisotropy and intramolecular magnetic interactions in both compounds, evidencing a more important role of the anisotropic exchange for the NdIII derivative. The comparison of experimental and theoretical data indicates that, in the case of largely rhombic lanthanide ions, ab initio calculations can fail in determining the orientation of the weakest components, while being reliable in determining their principal values. However, they remain of paramount importance to set the analysis of EPR and CTM on sound basis, thus obtaining a very precise picture of the magnetic interactions in these systems. Finally, the electronic structure of the two complexes, as obtained by this approach, is consistent with the absence of zero-field slow relaxation observed in ac susceptibility.
2021
60
8692
8703
Mayans J.; Tesi L.; Briganti M.; Boulon M.-E.; Font-Bardia M.; Escuer A.; Sorace L.
File in questo prodotto:
File Dimensione Formato  
212-Lndimers_InorgChem_Mayans_2021.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1242742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact