Background: Surveillance of serogroup B Neisseria meningitidis (MenB) subcapsular antigen variant distribution in invasive disease (IMD) is fundamental for multicomponent vaccine coverage prediction. IMD incidence in Tuscany in 2018 was 0.37/100,000 inhabitants, with MenB representing 57% of cases. More than 50% of MenB responsible for IMD cannot be grown in culture, and molecular characterization of these cases is often lacking. The aim of the present study was to describe the distribution of MenB subcapsular antigens, comparing their distribution in culture-positive and culture-negative cases. Methods: Molecular data regarding clonal complexes and subcapsular antigen variants of the 55 MenB-IMD occurring in Tuscany from 2007 to 2019 were made available, and their distribution between culture-positive and culture-negative cases was compared. Genetic-MATS and MenDeVAR prediction systems were used to assess multicomponent vaccine coverage predictions. Results: Culture-positive and culture-negative cases presented a similar percentage representation of fHbp subfamilies. Clonal complex 162 was almost constantly associated with fHbp B231/v1.390, Neisserial-heparin-binding-antigen (NHBA) peptide 20, and PorinA P1.22,14 (BAST-3033): these were the most represented antigenic variants, both in culture-positive and culture-negative groups. Point-estimate 4CMenB coverage prediction was 88.5% (84.6%–92.3%). Conclusions: Our data demonstrate that non-cultivable meningococci, responsible for IMD, possess genetic variants of subcapsular antigens that are representative of what has been observed in culture. The vaccine-related antigenic epidemiology of MenB is thus similar in both groups. One of the first on-field applications of gMATS and MenDeVAR identifies their major advantage in their accessibility and in the possibility of dynamic data implementation that must be pursued continuously in the future.

Molecular typing of group B Neisseria meningitidis'subcapsular antigens directly on biological samples demonstrates epidemiological congruence between culture-positive and -negative cases: A surveillance study of invasive disease over a 13-year period / Lodi L.; Moriondo M.; Nieddu F.; Ricci S.; Guiducci S.; Lippi F.; Canessa C.; Calistri E.; Citera F.; Giovannini M.; Indolfi G.; Resti M.; Azzari C.. - In: JOURNAL OF INFECTION. - ISSN 0163-4453. - ELETTRONICO. - 82:(2021), pp. 28-36. [10.1016/j.jinf.2020.12.034]

Molecular typing of group B Neisseria meningitidis'subcapsular antigens directly on biological samples demonstrates epidemiological congruence between culture-positive and -negative cases: A surveillance study of invasive disease over a 13-year period

Lodi L.;Moriondo M.;Nieddu F.;Ricci S.;Guiducci S.;Lippi F.;Canessa C.;Calistri E.;Citera F.;Giovannini M.;Indolfi G.;Resti M.;Azzari C.
2021

Abstract

Background: Surveillance of serogroup B Neisseria meningitidis (MenB) subcapsular antigen variant distribution in invasive disease (IMD) is fundamental for multicomponent vaccine coverage prediction. IMD incidence in Tuscany in 2018 was 0.37/100,000 inhabitants, with MenB representing 57% of cases. More than 50% of MenB responsible for IMD cannot be grown in culture, and molecular characterization of these cases is often lacking. The aim of the present study was to describe the distribution of MenB subcapsular antigens, comparing their distribution in culture-positive and culture-negative cases. Methods: Molecular data regarding clonal complexes and subcapsular antigen variants of the 55 MenB-IMD occurring in Tuscany from 2007 to 2019 were made available, and their distribution between culture-positive and culture-negative cases was compared. Genetic-MATS and MenDeVAR prediction systems were used to assess multicomponent vaccine coverage predictions. Results: Culture-positive and culture-negative cases presented a similar percentage representation of fHbp subfamilies. Clonal complex 162 was almost constantly associated with fHbp B231/v1.390, Neisserial-heparin-binding-antigen (NHBA) peptide 20, and PorinA P1.22,14 (BAST-3033): these were the most represented antigenic variants, both in culture-positive and culture-negative groups. Point-estimate 4CMenB coverage prediction was 88.5% (84.6%–92.3%). Conclusions: Our data demonstrate that non-cultivable meningococci, responsible for IMD, possess genetic variants of subcapsular antigens that are representative of what has been observed in culture. The vaccine-related antigenic epidemiology of MenB is thus similar in both groups. One of the first on-field applications of gMATS and MenDeVAR identifies their major advantage in their accessibility and in the possibility of dynamic data implementation that must be pursued continuously in the future.
2021
82
28
36
Lodi L.; Moriondo M.; Nieddu F.; Ricci S.; Guiducci S.; Lippi F.; Canessa C.; Calistri E.; Citera F.; Giovannini M.; Indolfi G.; Resti M.; Azzari C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1243363
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact