In this work, we incorporate reversibility into structured communication-based programming, to allow parties of a session to automatically undo, in a rollback fashion, the effect of previously executed interactions. This permits taking different computation paths along the same session, as well as reverting the whole session and starting a new one. Our aim is to define a theoretical basis for examining the interplay in concurrent systems between reversible computation and session-based interaction. We thus enrich a session-based variant of pi-calculus with memory devices, dedicated to keep track of the computation history of sessions in order to reverse it. We discuss our initial investigation concerning the definition of a session type discipline for the proposed reversible calculus, and its practical advantages for static verification of safe composition in communication-centric distributed software performing reversible computations.
Towards Reversible Sessions / F. Tiezzi; N. Yoshida. - In: ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE. - ISSN 2075-2180. - ELETTRONICO. - 155:(2014), pp. 17-24. [10.4204/EPTCS.155.3]
Towards Reversible Sessions
F. Tiezzi;
2014
Abstract
In this work, we incorporate reversibility into structured communication-based programming, to allow parties of a session to automatically undo, in a rollback fashion, the effect of previously executed interactions. This permits taking different computation paths along the same session, as well as reverting the whole session and starting a new one. Our aim is to define a theoretical basis for examining the interplay in concurrent systems between reversible computation and session-based interaction. We thus enrich a session-based variant of pi-calculus with memory devices, dedicated to keep track of the computation history of sessions in order to reverse it. We discuss our initial investigation concerning the definition of a session type discipline for the proposed reversible calculus, and its practical advantages for static verification of safe composition in communication-centric distributed software performing reversible computations.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.