Despite the intense research on developing new therapies for neuropathic pain states, available treatments have limited efficacy and unfavorable safety profiles. Epigenetic alterations have a great influence on the development of cancer and neurological diseases, as well as neuropathic pain. Histone acetylation has prevailed as one of the well investigated epigenetic modifications in these diseases. Altered spinal activity of histone deacetylase (HDAC) and Bromo and Extra terminal Journal Pre-proof domain (BET) have been described in neuropathic pain models and restoration of these aberrant epigenetic modifications showed pain-relieving activity. Over the last decades HDACs and BETs have been the focus of drug discovery studies, leading to the development of numerous small-molecule inhibitors. Clinical trials to evaluate their anticancer activity showed good efficacy but raised toxicity concerns that limited translation to the clinic. To maximize activity and minimize toxicity, these compounds can be applied in combination of sub-maximal doses to produce additive or synergistic interactions (combination therapy). Recently, of particular interest, dual BET/HDAC inhibitors (multi-target drugs) have been developed to assure simultaneous modulation of BET and HDAC activity by a single molecule. This review will summarize the most recent advances with these strategies, describing advantages and limitations of single drug treatment vs combination regimens. This review will also provide a focus on dual BET/HDAC drug discovery investigations as future therapeutic opportunity for human therapy of neuropathic pain.

Dual BET/HDAC inhibition to relieve neuropathic pain: recent advances, perspectives, and future opportunities / Romanelli, Maria Novella; Borgonetti, Vittoria; Galeotti, Nicoletta. - In: PHARMACOLOGICAL RESEARCH. - ISSN 1043-6618. - STAMPA. - (2021), pp. 105901-105916. [10.1016/j.phrs.2021.105901]

Dual BET/HDAC inhibition to relieve neuropathic pain: recent advances, perspectives, and future opportunities

Romanelli, Maria Novella;Borgonetti, Vittoria;Galeotti, Nicoletta
2021

Abstract

Despite the intense research on developing new therapies for neuropathic pain states, available treatments have limited efficacy and unfavorable safety profiles. Epigenetic alterations have a great influence on the development of cancer and neurological diseases, as well as neuropathic pain. Histone acetylation has prevailed as one of the well investigated epigenetic modifications in these diseases. Altered spinal activity of histone deacetylase (HDAC) and Bromo and Extra terminal Journal Pre-proof domain (BET) have been described in neuropathic pain models and restoration of these aberrant epigenetic modifications showed pain-relieving activity. Over the last decades HDACs and BETs have been the focus of drug discovery studies, leading to the development of numerous small-molecule inhibitors. Clinical trials to evaluate their anticancer activity showed good efficacy but raised toxicity concerns that limited translation to the clinic. To maximize activity and minimize toxicity, these compounds can be applied in combination of sub-maximal doses to produce additive or synergistic interactions (combination therapy). Recently, of particular interest, dual BET/HDAC inhibitors (multi-target drugs) have been developed to assure simultaneous modulation of BET and HDAC activity by a single molecule. This review will summarize the most recent advances with these strategies, describing advantages and limitations of single drug treatment vs combination regimens. This review will also provide a focus on dual BET/HDAC drug discovery investigations as future therapeutic opportunity for human therapy of neuropathic pain.
105901
105916
Romanelli, Maria Novella; Borgonetti, Vittoria; Galeotti, Nicoletta
File in questo prodotto:
File Dimensione Formato  
189.HDAC:BET review.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: DRM non definito
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2158/1243761
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact