Given a finite group G, denote by Γ(G) the simple undirected graph whose vertices are the distinct sizes of noncentral conjugacy classes of G, and set two vertices of Γ(G) to be adjacent if and only if they are not coprime numbers. In this note we prove that, if Γ(G) is a k-regular graph with k ≥ 1, then Γ(G) is a complete graph with k+1$k+1$ vertices.
Conjugacy classes of finite groups and graph regularity / Bianchi M.; Camina R.D.; Herzog M.; Pacifici E.. - In: FORUM MATHEMATICUM. - ISSN 0933-7741. - STAMPA. - 27:(2015), pp. 3167-3172. [10.1515/forum-2013-0098]
Conjugacy classes of finite groups and graph regularity
Pacifici E.
2015
Abstract
Given a finite group G, denote by Γ(G) the simple undirected graph whose vertices are the distinct sizes of noncentral conjugacy classes of G, and set two vertices of Γ(G) to be adjacent if and only if they are not coprime numbers. In this note we prove that, if Γ(G) is a k-regular graph with k ≥ 1, then Γ(G) is a complete graph with k+1$k+1$ vertices.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2015ForumRegularity.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
157.42 kB
Formato
Adobe PDF
|
157.42 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.