Helical shaped fused bis-phenothiazines 1–9 have been prepared and their red-ox behaviour quantitatively studied. Helicene radical cations (Hel.+) can be obtained either by UV-irradiation in the presence of PhCl or by chemical oxidation. The latter process is extremely sensitive to the presence of acids in the medium with molecular oxygen becoming a good single electron transfer (SET) oxidant. The reaction of hydroxy substituted helicenes 5–9 with peroxyl radicals (ROO.) occurs with a ‘classical’ HAT process giving HelO. radicals with kinetics depending upon the substitution pattern of the aromatic rings. In the presence of acetic acid, a fast medium-promoted proton-coupled electron transfer (PCET) process takes place with formation of HelO. radicals possibly also via a helicene radical cation intermediate. Remarkably, also helicenes 1–4, lacking phenoxyl groups, in the presence of acetic acid react with peroxyl radicals through a medium-promoted PCET mechanism with formation of the radical cations Hel.+. Along with the synthesis, EPR studies of radicals and radical cations, BDE of Hel-OH group (BDEOH), and kinetic constants (kinh) of the reactions with ROO. species of helicenes 1–9 have been measured and calculated to afford a complete rationalization of the redox behaviour of these appealing chiral compounds.
SET and HAT/PCET acid-mediated oxidation processes in helical shaped fused bis-phenothiazines / Amorati R.; Valgimigli L.; Baschieri A.; Guo Y.; Mollica F.; Menichetti S.; Lupi M.; Viglianisi C.. - In: CHEMPHYSCHEM. - ISSN 1439-4235. - ELETTRONICO. - 22:(2021), pp. 1446-1454. [10.1002/cphc.202100387]
SET and HAT/PCET acid-mediated oxidation processes in helical shaped fused bis-phenothiazines
Menichetti S.;Lupi M.;Viglianisi C.
2021
Abstract
Helical shaped fused bis-phenothiazines 1–9 have been prepared and their red-ox behaviour quantitatively studied. Helicene radical cations (Hel.+) can be obtained either by UV-irradiation in the presence of PhCl or by chemical oxidation. The latter process is extremely sensitive to the presence of acids in the medium with molecular oxygen becoming a good single electron transfer (SET) oxidant. The reaction of hydroxy substituted helicenes 5–9 with peroxyl radicals (ROO.) occurs with a ‘classical’ HAT process giving HelO. radicals with kinetics depending upon the substitution pattern of the aromatic rings. In the presence of acetic acid, a fast medium-promoted proton-coupled electron transfer (PCET) process takes place with formation of HelO. radicals possibly also via a helicene radical cation intermediate. Remarkably, also helicenes 1–4, lacking phenoxyl groups, in the presence of acetic acid react with peroxyl radicals through a medium-promoted PCET mechanism with formation of the radical cations Hel.+. Along with the synthesis, EPR studies of radicals and radical cations, BDE of Hel-OH group (BDEOH), and kinetic constants (kinh) of the reactions with ROO. species of helicenes 1–9 have been measured and calculated to afford a complete rationalization of the redox behaviour of these appealing chiral compounds.File | Dimensione | Formato | |
---|---|---|---|
ChemPhysChem - 2021 - Amorati - SET and HAT PCET acid‐mediated oxidation processes in helical shaped fused.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
3.19 MB
Formato
Adobe PDF
|
3.19 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.