We prove that, given a quasi-primitive complex representation D for a finite group G, the possible ways of decomposing D as an inner tensor product of two projective representations of G are parametrised in terms of the group structure of G. More explicitly, we construct a bijection between the set of such decompositions and a particular interval in the lattice of normal subgroups of G.
On tensor factorisation for representations of finite groups / Pacifici E.. - In: BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY. - ISSN 0004-9727. - STAMPA. - 69:(2004), pp. 161-171. [10.1017/s0004972700034365]
On tensor factorisation for representations of finite groups
Pacifici E.
2004
Abstract
We prove that, given a quasi-primitive complex representation D for a finite group G, the possible ways of decomposing D as an inner tensor product of two projective representations of G are parametrised in terms of the group structure of G. More explicitly, we construct a bijection between the set of such decompositions and a particular interval in the lattice of normal subgroups of G.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2004factorization.pdf
accesso aperto
Tipologia:
Preprint (Submitted version)
Licenza:
Tutti i diritti riservati
Dimensione
267.15 kB
Formato
Adobe PDF
|
267.15 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.