We study N interacting random walks on the positive integers. Each particle has drift δ towards infinity, a reflection at the origin, and a drift towards particles with lower positions. This inhomogeneous mean field system is shown to be ergodic only when the interaction is strong enough. We focus on this latter regime, and point out the effect of piles of particles, a phenomenon absent in models of interacting diffusion in continuous space.

Ergodicity of a system of interacting random walks with asymmetric interaction / Andreis L.; Asselah A.; Pra P.D.. - In: ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES. - ISSN 0246-0203. - ELETTRONICO. - 55:(2019), pp. 590-606. [10.1214/18-AIHP893]

Ergodicity of a system of interacting random walks with asymmetric interaction

Andreis L.;
2019

Abstract

We study N interacting random walks on the positive integers. Each particle has drift δ towards infinity, a reflection at the origin, and a drift towards particles with lower positions. This inhomogeneous mean field system is shown to be ergodic only when the interaction is strong enough. We focus on this latter regime, and point out the effect of piles of particles, a phenomenon absent in models of interacting diffusion in continuous space.
2019
55
590
606
Andreis L.; Asselah A.; Pra P.D.
File in questo prodotto:
File Dimensione Formato  
AIHP893.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 260.34 kB
Formato Adobe PDF
260.34 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1246911
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact