We consider an inviscid stochastically forced dyadic model, where the additive noise acts only on the first component. We prove that a strong solution for this problem exists and is unique by means of uniform energy estimates. Moreover, we exploit these results to establish strong existence and uniqueness of the stationary distribution.
Strong existence and uniqueness of the stationary distribution for a stochastic inviscid dyadic model / Andreis L.; Barbato D.; Collet F.; Formentin M.; Provenzano L.. - In: NONLINEARITY. - ISSN 0951-7715. - ELETTRONICO. - 29:(2016), pp. 1156-1169. [10.1088/0951-7715/29/3/1156]
Strong existence and uniqueness of the stationary distribution for a stochastic inviscid dyadic model
Andreis L.
;
2016
Abstract
We consider an inviscid stochastically forced dyadic model, where the additive noise acts only on the first component. We prove that a strong solution for this problem exists and is unique by means of uniform energy estimates. Moreover, we exploit these results to establish strong existence and uniqueness of the stationary distribution.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Andreis_2016_Nonlinearity_29_1156.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
546.27 kB
Formato
Adobe PDF
|
546.27 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.