We consider an inviscid stochastically forced dyadic model, where the additive noise acts only on the first component. We prove that a strong solution for this problem exists and is unique by means of uniform energy estimates. Moreover, we exploit these results to establish strong existence and uniqueness of the stationary distribution.

Strong existence and uniqueness of the stationary distribution for a stochastic inviscid dyadic model / Andreis L.; Barbato D.; Collet F.; Formentin M.; Provenzano L.. - In: NONLINEARITY. - ISSN 0951-7715. - ELETTRONICO. - 29:(2016), pp. 1156-1169. [10.1088/0951-7715/29/3/1156]

Strong existence and uniqueness of the stationary distribution for a stochastic inviscid dyadic model

Andreis L.
;
2016

Abstract

We consider an inviscid stochastically forced dyadic model, where the additive noise acts only on the first component. We prove that a strong solution for this problem exists and is unique by means of uniform energy estimates. Moreover, we exploit these results to establish strong existence and uniqueness of the stationary distribution.
2016
29
1156
1169
Andreis L.; Barbato D.; Collet F.; Formentin M.; Provenzano L.
File in questo prodotto:
File Dimensione Formato  
Andreis_2016_Nonlinearity_29_1156.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 546.27 kB
Formato Adobe PDF
546.27 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1246920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact