The paper presents a maximum power point tracking algorithm based on a neural network implementation and aimed to search the optimal working point in two different photovoltaic technologies coupled to a buck-boost DC-DC converter. The neural network generates the current reference for the control algorithm that manages the DC-DC converter switches. The paper analyzes the neural network training and reports the results obtained considering the two different PV technologies.

Neural Networks for Maximum Power Point Tracking Application to Silicon and CIGS Photovoltaic Modules / Bertoluzzo M.; Sieni E.; Zordan M.; Forato M.; Mognaschi M.E.; Lozito G.M.; Riganti Fulginei F.. - ELETTRONICO. - (2018), pp. 1-6. (Intervento presentato al convegno 4th IEEE International Forum on Research and Technologies for Society and Industry, RTSI 2018 tenutosi a ita nel 2018) [10.1109/RTSI.2018.8548445].

Neural Networks for Maximum Power Point Tracking Application to Silicon and CIGS Photovoltaic Modules

Sieni E.;Lozito G. M.;
2018

Abstract

The paper presents a maximum power point tracking algorithm based on a neural network implementation and aimed to search the optimal working point in two different photovoltaic technologies coupled to a buck-boost DC-DC converter. The neural network generates the current reference for the control algorithm that manages the DC-DC converter switches. The paper analyzes the neural network training and reports the results obtained considering the two different PV technologies.
2018
IEEE 4th International Forum on Research and Technologies for Society and Industry, RTSI 2018 - Proceedings
4th IEEE International Forum on Research and Technologies for Society and Industry, RTSI 2018
ita
2018
Bertoluzzo M.; Sieni E.; Zordan M.; Forato M.; Mognaschi M.E.; Lozito G.M.; Riganti Fulginei F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1247589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact