The single hysteron model is identified to reconstruct the magnetization processes of a grain-oriented electrical steel and it is implemented in a finite-element scheme. The model involves the Zeeman energy and the anisotropy energy of the material and an interaction field to take into account others terms, such as the magnetoelastic energy, the exchange energy, inclusions, and crystallographic discontinuities. The interaction field is evaluated experimentally using a round rotational single sheet tester, where a disk sample of the material is excited for several rotational magnetization processes. Details about the finite-element scheme, the computational time, and the memory allocations involved in the simulations are presented and discussed.

Implementation of the Single Hysteron Model in a Finite-Element Scheme / Cardelli E.; Faba A.; Laudani A.; Lozito G.M.; Quondam Antonio S.; Riganti Fulginei F.; Salvini A.. - In: IEEE TRANSACTIONS ON MAGNETICS. - ISSN 0018-9464. - ELETTRONICO. - 53:(2017), pp. 1-4. [10.1109/TMAG.2017.2698238]

Implementation of the Single Hysteron Model in a Finite-Element Scheme

Lozito G. M.;
2017

Abstract

The single hysteron model is identified to reconstruct the magnetization processes of a grain-oriented electrical steel and it is implemented in a finite-element scheme. The model involves the Zeeman energy and the anisotropy energy of the material and an interaction field to take into account others terms, such as the magnetoelastic energy, the exchange energy, inclusions, and crystallographic discontinuities. The interaction field is evaluated experimentally using a round rotational single sheet tester, where a disk sample of the material is excited for several rotational magnetization processes. Details about the finite-element scheme, the computational time, and the memory allocations involved in the simulations are presented and discussed.
53
1
4
Cardelli E.; Faba A.; Laudani A.; Lozito G.M.; Quondam Antonio S.; Riganti Fulginei F.; Salvini A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2158/1247603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 0
social impact